
Simulink® Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Release Notes
© COPYRIGHT 2000–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

R2017a

Simulation Analysis and Performance 1-2

Parallel Simulations: Directly run multiple parallel simulations
from the parsim command . 1-2

Simulink Cache: Get simulation results faster by using shared
model artifacts . 1-2

Inport File Streaming: Stream large input signals from MAT-
files without loading the data into memory 1-3

Log and Load Big Data . 1-3
Use timetable Data in Dataset Objects 1-4
Analyze in MATLAB Big Data Created by Simulink . . . 1-4

Unified Streaming and Logging: Mark a signal once to stream it
to the Simulation Data Inspector and log it to the MATLAB
workspace . 1-4

Simulation Data Inspector: Run simulation comparisons with a
new UI, time tolerance support, and faster performance . . 1-5

Dashboard Block Connection Indicators: Easily determine
which block in your model is associated with a given
Dashboard block . 1-5

Signal Tracing: Incrementally trace and highlight paths for
debugging . 1-6

Root-Level Inport Blocks: Create dataset for root-level Inport
blocks . 1-7

Simulation Logging Data and Metadata: Access simulation data
and information more directly . 1-7

Rapid Accelerator mode: Rapid Accelerator now supports S-
functions without source code . 1-8

Signal Editor: Create and edit input signals that can be
organized for multiple simulations 1-8

Improved simulation performance when stepping back is
enabled . 1-8

iii

Simulink Diagnostic Management: Control which simulation
and fixed-point diagnostic warnings you receive from specific
blocks, including model reference 1-9

Select blocks with certain diagnostic suppressions by
default . 1-9

Diagnostic suppressor functions support MSLDiagnostic
as input argument . 1-9

Improved workflow for suppressing diagnostics from
referenced models . 1-10

. 1-10
Absolute tolerance for continuous variable step solver tied

to the relative tolerance . 1-10

Simulink Editor . 1-11

Automatic Port Creation: Add inports and outports to blocks
when routing signals . 1-11

Model Block Masking: Customize the parameter dialog boxes
for referenced models . 1-11

Quick Find: Use a modifier to search for model properties in
search box . 1-11

Format Painter: Copy formatting between model elements . 1-12
Refresh Library Browser: Update quick insert list with custom

libraries using menu command . 1-12
Functionality Being Removed or Changed 1-12

Functionality . 1-12
Result . 1-12
Use Instead . 1-12
Compatibility Consideration . 1-13

Optimize rendering during mask icon drawing 1-13

Component-Based Modeling . 1-14

Reduced Bus Wiring: Quickly group signals as buses and
automatically create bus element ports for fewer signal lines
between and within subsystems 1-14

Bus and Vector Mixtures Not Supported 1-16
Inline Variants: Single-Input/Single-Output Inline Variant

blocks support zero active variant control 1-17
Searchable, sortable tables for parameterizing reusable models

with model arguments . 1-17

Project and File Management . 1-18

iv Contents

Simulink Project Upgrade: Easily update all the models in your
Simulink Project to the latest release 1-18

Missing Product Identification: Fix models with unresolved
library links and unknown block types by finding and
installing missing products . 1-18

Git Pull: Fetch and merge in one step 1-19
Project Creation API: Set up projects programmatically,

including shortcuts and referenced projects 1-19
Referenced Project Change Management: Compare components

with checkpoints . 1-20
Source Control Toolstrip: Simplified workflow for working with

source control . 1-20
Custom Task Tool: Improved interface for managing custom

tasks and creating reports from results 1-20
Git Remote Repositories: Connect existing project to a remote

repository . 1-20
Start Page Example Search: Find featured examples 1-21
Model Templates: Simplified workflow for exporting models to

templates . 1-21
Start Page Favorites: Easily get back to your favorite models

and projects . 1-21
Project Componentization: Include referenced projects in

templates for sharing components 1-22
bdIsDirty Function: Programmatically check whether models

contain unsaved changes . 1-22
listRequiredFiles Function: Get project file dependencies

programmatically . 1-23

Data Management . 1-24

Simulation Data: Easily access simulation output data in
the MATLAB Variable Editor and MATLAB Command
Window . 1-24

Management of workspace variables and mask parameters from
block parameters . 1-24

Association of root-level Outport block with Simulink.Signal
object . 1-25

Initial State: Log and load initial states using Dataset
format . 1-25

Root Inport Mapper Tool Updates . 1-25
Legacy Code Tool StartFcnSpec and
InitializeConditionsFcnSpec accept outputs as
arguments . 1-25

v

Utility to generate Simulink representations of custom data
types defined by external C code 1-26

Direct representation of fixed-point data types by
Simulink.AliasType . 1-26

Display of alias, base, or both data types in a model 1-27
More accurate comparison of nondouble data to specified

minimum and maximum values 1-27
Deep copy of handle objects by

Simulink.ModelWorkspace.assignin 1-29
Use of From Workspace block in a model that uses a data

dictionary . 1-30
Specify 64-bit integer data types without a Fixed-Point

Designer license . 1-30

Block Enhancements . 1-31

Support for Scopes in For Each Subsystems 1-31
Scope Blocks: Support for nonvirtual bus and array of buses

signals . 1-31
Specify image file icons for MATLAB System block 1-31
Copy scope to clipboard . 1-31
Interactive legend for scopes . 1-32
Stem plot option for Scope block . 1-32
Simulink Blocks: Simulink implements same workflow when

adding a block through the user interface or the command
line . 1-32

Slider Gain block: Minimum and Maximum values must not be
same . 1-32

Default input signal attributes for MATLAB System block . 1-32
Additional calls to Propagation Methods

getOutputDataTypeImpl, getOutputSizeImpl and
isOutputComplexImpl during the model pre-compile
phase . 1-33

Math Function block rem, mod, and pow function changes . 1-33
Trigonometric Function block asin, asinh, acos, and acosh

function changes . 1-33
Dynamic memory allocation for unbounded arrays and large

arrays . 1-34
Better handling of promoted parameter 1-34

Connection to Hardware . 1-35

Wireless Connectivity: Use UDP and TCP/IP blocks to let
Simulink hardware targets communicate with each other 1-35

vi Contents

Support for print and println on Arduino Serial Transmit
block . 1-35

Hardware plugin detection for Arduino boards in MATLAB,
Simulink . 1-35

Blocks added to LEGO EV3 support package 1-35
Blocks added to Raspberry Pi support package 1-36
Support for all Android smartphones and tablets 1-37
Blocks added to Android support package 1-37
Blocks added to Apple iOS support package 1-37
Support for Scope block on Apple iOS and Android apps . . . 1-37

MATLAB Function Blocks . 1-38

Dynamic memory allocation for unbounded arrays and large
arrays . 1-38

Nested functions . 1-39
Handle classes in value classes . 1-39
Constant folding of value classes . 1-39
Class properties and structure fields passed by reference to

external C functions . 1-40
Function specialization prevention with coder.ignoreConst . 1-41
New coder.unroll syntax for more readable code 1-41
Size argument for coder.opaque . 1-42
Code generation for more MATLAB functions 1-42
Code generation for more Audio System Toolbox System

objects . 1-43
Code generation for more Communications System Toolbox

System objects . 1-43
Code generation for more DSP System Toolbox System

objects . 1-43
Code generation for more Phased Array System Toolbox System

objects . 1-43
Code generation for more Robotics System Toolbox functions

and classes . 1-44
Code generation for more Signal Processing Toolbox

functions . 1-44
Statistics and Machine Learning Toolbox Code Generation:

Generate C code for prediction by using linear models,
generalized linear models, decision trees and ensembles of
classification trees . 1-45

Enhancement to synchronous subsystem support 1-45
Support for tunable structure array parameters 1-46
State behavior specification for function-call input events . . 1-46

vii

S-Functions . 1-47

Functionality being Removed or Changed 1-47

R2016b

Simulation Analysis and Performance 2-2

Just-in-Time Acceleration Builds: Quickly build the top-level
model for improved performance when running simulations
in Accelerator mode . 2-2

Dataset Signal Plot: View and analyze dataset signals directly
from the MATLAB command line 2-2

Multi-State Image Dashboard Block: Display different images
based on the signal value . 2-2

Simplified tasking mode setup . 2-2
Diagnostic Suppressor: Suppress specific simulation warnings

on particular blocks . 2-3
Diagnostic Viewer: Improved build diagnostics display 2-4
Export functions allow periodic function calls 2-4

Simulink Editor . 2-6

Property Inspector: Edit parameters and properties of model
elements using a single interface 2-6

Edit-Time Checking: Detect and fix potential issues in your
model at design time . 2-6

Finder: Search for model elements using improved interface . 2-7
Annotations in Libraries: Add annotations from libraries into

models . 2-7
Library Browser: Expand or collapse libraries by default 2-7
Library Browser API: Programmatically refresh the Library

Browser . 2-7
Annotations: Click once to select annotation 2-7
Default Model Font: Specify default font for model elements . 2-8
Simulink Preferences: Simplified and reorganized interface . . 2-8
Simulink Editor Fonts: FreeType font engine replaces Windows

GDI font engine . 2-8

Component-Based Modeling . 2-10

viii Contents

Initialize and Terminate Function Blocks: Respond to events to
model dynamic startup and shutdown behavior 2-10

Variant Subsystem Condition Propagation: Automatically
assign variant conditions to blocks outside the subsystem for
improved performance . 2-10

Simulink Units Updates . 2-10
Additional SimStruct Functions to Specify Units for Input and

Output Ports . 2-11
Additional heterogeneous targets supported for concurrent

execution . 2-11
Simulink.BusElement: SamplingMode property removed to

support having blocks specify whether to treat inputs as
frame-based signals . 2-12

Export functions allow periodic function calls 2-12
Variant Refresh: Improved performance with removal of live

refresh . 2-13
Variant Subsystem: Convert Subsystems with physical ports to

Variant . 2-13
Variant Reducer: Additional model reduction modes in Variant

Reducer (requires SLDV product license) 2-13
Enhanced find_mdlrefs function: Keep models loaded that the

function loads . 2-13
Subsystem conversion to referenced models: Automatic

subsystem wrapper and improved Goto and From block
handling . 2-14

Disallow multiple iterations of root Inport function-call with
discrete sample time . 2-14

Project and File Management . 2-15

Default Model Template: Use your own customized settings
when creating new models . 2-15

Upgrade Advisor API: Automate the process of upgrading large
model hierarchies . 2-16

Project-Wide Search: Search inside all models and supporting
files . 2-16

Refactoring Tools: Rename folders and automatically replace all
references . 2-17

Project Toolbox Analysis: Find products and toolboxes used by a
project . 2-17

Project Derived File Analysis: Find out-of-date .p, .slxp. and
.mex files in a project . 2-17

Project Export Profiles: Share specified files to zip archive . 2-18
Project Batch Job Report: Archive results in a document . . . 2-18

ix

Git Submodules: Include submodules in your project 2-18
C/C++ file dependency analysis: View dependencies between C/

C++ source and header files in the Impact graph 2-18
Updated source control SDK: Write a source control integration

providing file-based actions and annotations 2-18
Diff Tools: Customize external source control tools to use

MATLAB to compare and merge 2-19
SVN Cleanup: Fix problems with working copy locks 2-19
Command-line Impact Analysis: Update and analyze the

dependencies graph programmatically 2-19

Data Management . 2-20

Model Data Editor: Configure model data properties using a
table within the Simulink Editor 2-20

Output Logging: Log data incrementally, with support for rapid
accelerator mode and variant conditions 2-20

Logging Inside For Each Subsystem: Log signals inside a For
Each subsystem by marking lines with antennas 2-21

Logged Dataset Data Analysis: Call same function for all
timeseries objects in logged Dataset data 2-21

Scalar expansion of initial value for data store 2-21
Technique to determine whether signal has variable size . . 2-22
View your model configuration parameters as a group on the All

Parameters tab . 2-22
Enhanced error reporting and extended syntax for specifying

argument dimensions for function specifications in Legacy
Code Tool . 2-22

Class to package and share breakpoint and table data for
lookup tables . 2-22

Root Inport Mapping Tool Updates 2-23
Option to disable resolution of signals and states to

Simulink.Signal objects . 2-23
Help fixing configuration errors from Diagnostic Viewer . . . 2-24
Metadata for Logging to Persistent Storage: Simulation

metadata contains persistent storage logging settings to
facilitate analysis of data from multiple simulations 2-24

Improved display of large arrays by Model Explorer and
Simulink.Parameter property dialog boxes 2-25

Configuration set in base workspace resolves variables in base
workspace . 2-25

Connection to Hardware . 2-26

x Contents

Raspberry Pi 3 Support: Run Simulink models on Raspberry Pi
3 hardware . 2-26

Arduino: Improved External mode over serial
communication . 2-26

Simulink Support Package for Samsung GALAXY Android
Devices renamed to Simulink Support Package for Android
Devices . 2-26

Google Nexus Support: Run Simulink models on Google Nexus
Android devices . 2-26

Block Enhancements . 2-27

State Reader and Writer Blocks: Reset and record states during
model execution . 2-27

MATLAB System Block Support for Global Data: Access
Simulink data stores from System objects using global
variables . 2-27

MATLAB System block now supports enumerated data types 2-27
MATLAB System Block Support for LAPACK: Generate faster

standalone code for linear algebra in a MATLAB System
block . 2-27

Simpler way to call System objects 2-28
System objects support for additional inputs, global variables,

and enumeration data types . 2-29
Prelookup and Interpolation Using Prelookup Block Bus

Support: Simplify and extend use of index and fraction
signals . 2-29

From Spreadsheet block updates . 2-30
Property inspector available for Simulink blocks 2-30
Manual Variant Source and Sink: Switch manually between

different variants without using conditions 2-30
Block Mask: Improved performance while evaluating mask

parameter in fast restart mode . 2-30
Slider Range Parameter: Dynamically change the range of

slider and dial parameter . 2-30
Some types of unit delay blocks obsoleted 2-30
Enhanced discrete block behavior . 2-31

MATLAB Function Blocks . 2-32

MATLAB Language Support: Use recursive functions and
anonymous functions in a MATLAB Function block 2-32

Recursive functions . 2-32
Anonymous functions . 2-32

xi

Variable-Size Cell Array Support: Use cell to create a variable-
size cell array in a MATLAB Function block 2-33

Error for testing equality between enumeration and character
array in a MATLAB Function block 2-33

Incremental build for relocation of MATLAB program files on
the MATLAB path . 2-34

Additional I/O Support: Generate code for fseek, ftell, fwrite 2-34
Code generation for additional MATLAB functions 2-35
Code generation for additional Audio System Toolbox

functions . 2-35
Code generation for additional Computer Vision System

Toolbox functions . 2-35
Statistics and Machine Learning Toolbox Code Generation:

Generate code for prediction by using SVM and logistic
regression models . 2-35

Communications and DSP Code Generation: Generate code for
additional functions . 2-36

Communications System Toolbox 2-36
DSP System Toolbox . 2-36
Phased Array System Toolbox 2-37

Conditional breakpoints for run-time debugging 2-37
Compiler optimization parameter support for faster

simulation . 2-38
Run-Time error stack in Diagnostic Viewer 2-38

Modeling Guidelines . 2-39

Modeling guidelines for high-integrity systems 2-39

R2016a

Simulation Analysis and Performance 3-2

Automatic Solver Option: Set up and simulate your model more
quickly with automatically selected solver settings 3-2

One-Click Display: Click a signal line when the simulation is
running to view the current value 3-2

Simulation Metadata Diagnostics: Understand why a
simulation has stopped in batch or individual runs 3-2

xii Contents

Multi-Input Root Inport Mapping: Connect multiple sets of
input signals to your Simulink model for interactive or batch
simulation . 3-2

Simulation for Mixed Targets: Simulate system-level designs
that integrate referenced models targeting an assembly of
heterogeneous embedded devices . 3-3

Time Out feature for Performance Advisor run time 3-3
Solver Profiler to speed up simulation performance 3-3
Diagnostic Viewer performance improvement 3-3

Component-Based Modeling . 3-4

Variant Source and Sink Blocks with Condition Propagation:
Design variant choices and automatically remove unneeded
functionality based on block connectivity 3-4

Scoping Simulink Functions: Call Simulink Function blocks
within a subsystem hierarchy . 3-4

Simulink Units: Specify, visualize, and check consistency of
units on interfaces . 3-4

Units in Simulink.Parameter and Simulink.Signal
Objects . 3-5

Specifying units in MATLAB Function blocks 3-5
Units for logging and loading signal data 3-5
New units blocks . 3-5
Configuration parameters . 3-5
Model Advisor checks . 3-6
Updated example . 3-6

Mask Dialogs: Create masks with flexible layout options and
new control parameters . 3-7

Mask Images: Quickly add images to masks and while keeping
the port names visible . 3-7

Tracing Simulink Functions: Display connections between all
Function Callers and a Simulink Function 3-7

Signal Label Propagation for Referenced Models: Propagate
signal labels out of referenced models by default 3-8

Simulink.SubSystem.convertToModelReference function
for multiple subsystem conversion: Convert multiple
subsystems with one command . 3-8

Subsystem to Model Reference Conversion: Insert subsystem
wrapper to preserve model layout 3-9

Model Reference Conversion Automatic Fix for Goto Blocks:
Convert subsystems with Goto blocks more easily 3-9

xiii

Virtual Bus Signals Across Model Reference Boundaries: Use
virtual bus signals as inputs or outputs of a referenced
model . 3-9

Bus Selector and Bus Assignment Block Signals: Display full
signal path while editing a model 3-10

Multi-Input Bus-Capable Block Ports: Simulate unconnected
multi-input bus-capable block ports without error 3-10

Outport Blocks with Bus Output: Simulate Outport blocks with
a bus output without error . 3-11

Function-Call Split block with multiple outputs 3-11
Function-Call Split block with no input signal 3-11
Trigger port with inherited periodic function-call signal . . . 3-12
Standalone code generation for models with asynchronous

function-call inputs . 3-12
Additional component parameters saved with
Simulink.ConfigSet.saveAs 3-12

Project and File Management . 3-13

Start Page: Get started or resume work faster by accessing
templates, recent models, and featured examples 3-13

Automatic Renaming: Update all references in a project when
you rename models, libraries, or MATLAB files 3-15

Three-Way Model Merge: Resolve conflicts between revisions
and ancestor models using Simulink projects 3-16

Template API: Programmatically create models and projects
from custom templates . 3-16

Export function: Export to previous version using
Simulink.exportToVersion . 3-16

Dirty Model Management: Identify, save, or discard unsaved
changes in project models . 3-17

Source Control API: Programmatically get modified files and
revision information . 3-17

Source Control Notifications: List changed files on update
(SVN); find out if your branch is behind the origin (Git) . . 3-17

SVN Externals: Include files in projects from other repositories
or repository locations . 3-17

Custom Shortcut Icons: Personalize frequent task buttons on
the toolstrip . 3-18

Simplified Configuration Parameters: Configure model more
easily using streamlined category panes 3-18

Data Import/Export Pane . 3-19
Diagnostics Pane . 3-19
Diagnostics > Data Validity Pane 3-19

xiv Contents

Diagnostics > Saving Pane . 3-20
Diagnostics > Solver Pane . 3-20
Optimization Pane . 3-20
Optimization > Signals and Parameters Pane 3-20
Simulation Target Pane . 3-21
Simulation Target > Custom Code Pane 3-21
Simulation Target > Symbols Pane 3-21

Simulink Editor . 3-22

Single-Selection Actions: Access commonly used editing actions
when clicking a block or signal line 3-22

Multiple-Selection Cue: Selecting multiple blocks in the
Simulink Editor shows new cue 3-22

Single Click for Quick Insert: Click block name once to insert
block from list . 3-23

Interactive Library Unlocking: Click lock symbol in custom
libraries to unlock . 3-23

Improved block search usability . 3-23

Data Management . 3-24

Signal and State Logging to File: Log data directly to a MAT-
file for long simulations . 3-24

Preserve symbolic constants in propagated signal
dimensions . 3-24

Dataset Format for Signal Logging: Log signals in format used
for other logging . 3-25

Unlimited Number of Data Points for Logging by Default: Log
all data points by default . 3-26

Root Inport Mapping Tool Updates 3-26
Function to convert MAT-file contents to

Simulink.SimulationData.Dataset object 3-26
Functions to identify and close data dictionaries 3-27
Navigation to variables from additional block dialog boxes . 3-27
Functionality Being Removed or Changed 3-28

Connection to Hardware . 3-29

Hardware implementation parameters enabled by default . . 3-29
Mac Support for LEGO EV3: Run Simulink models on LEGO

EV3 hardware from a Mac . 3-29

Block Enhancements . 3-30

xv

From Spreadsheet Block Updates . 3-30
System object enhancements to MATLAB System block . . . 3-30
Unit Delay block does not accept rate transitions 3-30
Matrix Interpolation Block for Multidimensional Lookup Table

Data . 3-30
Enhanced System Object Development with MATLAB Editor 3-30
Scope Block and Signal Viewer Enhancements 3-31

MATLAB Function Blocks . 3-32

Cell Array Support: Use additional cell array features in a
MATLAB Function block . 3-32

Use of {end + 1} to grow a cell array 3-32
Value and handle objects in cell arrays 3-32
Function handles in cell arrays 3-32

Non-Power-of-Two FFT Support: Generate code for fast Fourier
transforms for non-power-of-two transform lengths 3-32

Faster Standalone Code for Linear Algebra: Generate code
that takes advantage of your own target-specific LAPACK
library . 3-32

Concatenation of variable-size, empty arrays 3-33
xcorr Code Generation: Generate faster code for xcorr with long

input vectors . 3-35
More keyboard shortcuts for the MATLAB Function report . 3-36
Code generation for Audio System Toolbox functions and

System objects . 3-37
Code generation for additional Computer Vision System

Toolbox functions and objects . 3-37
Image Processing Toolbox Code Generation: Generate code for

additional functions . 3-37
Code generation for additional MATLAB functions 3-38

Specialized Math in MATLAB 3-38
Trigonometry in MATLAB . 3-38
Interpolation and Computational Geometry in

MATLAB . 3-38
Changes to code generation support for MATLAB functions . 3-38
Code generation for additional Communications System

Toolbox functions . 3-38
Code generation for additional DSP System Toolbox 3-39
Code generation for additional Phased Array System Toolbox

functions . 3-39
Code generation for WLAN System Toolbox functions and

System objects . 3-39
Units for MATLAB Function blocks 3-40

xvi Contents

In/Out Arguments: Specify same variable name for in/out
arguments . 3-40

UserData parameter available for storing values 3-40

Modeling Guidelines . 3-41

High-Integrity Systems: Model object, file, and folder names 3-41

Model Advisor . 3-42

Additional functionality for Model Advisor check that checks for
usage of partial structure . 3-42

S-Functions . 3-43

ssSetSolverNeedsReset updates . 3-43
ssSetSkipContStatesConsistencyCheck 3-43

R2015aSP1

Bug Fixes

R2015b

Simulink Editor . 5-2

Signal Line Healing: Click once to repair broken signal lines
after deleting blocks . 5-2

Multilingual Names and Comments: Use any language to
write block names, signal names, and MATLAB Function
comments . 5-2

Programmatic removal of mask dialog box controls and mask
parameters . 5-2

Alternative view of library contents in Library Browser 5-3
Prompt to set key parameter when dragging a block from the

Library Browser . 5-3

xvii

Printing to Postscript and EPS file formats 5-3
Programmatic addition of areas and images in models 5-3
Redesigned interface for Model Dependency Viewer 5-4
Visual cue for undo and redo of block parameter value

changes . 5-4

Simulation Analysis and Performance 5-6

New Interface for Scopes: View and debug signals with cursors
and measurements . 5-6

Fast Restart API: Programmatically run consecutive
simulations more quickly . 5-9

Auto solver that chooses solver for a model 5-9
Tunability of struct parameters in rapid accelerator mode . . . 5-9
Port value labels for nonvirtual buses and bus signals 5-10
Visualization of inserted rate transition blocks 5-10
Common format for saving states, output, and final states data

and other logging and loading techniques 5-10
Extended support for root Inport loading using Dataset format

in rapid accelerator . 5-10
Free MinGW-w64 compiler for running simulations on 64-bit

Windows® . 5-10

Component-Based Modeling . 5-11

More flexible configuration of Application lifespan (days)
parameter in a model reference hierarchy for simulation . 5-11

Model Advisor checks for simplified initialization mode 5-11
Changes to export-function models 5-11

Configuration Parameter for Scheduling Checks 5-11
Triggered Sample Time for Function-Call Subsystems . 5-11
Execution Order of Function-Call Root-Level Inport

Blocks . 5-11
Saving of list view parameters with

Simulink.ConfigSet.saveAs . 5-12

Project and File Management . 5-13

Referenced Projects: Create reusable components for large
modeling projects . 5-13

Configuration Parameters List View: List, edit, and search all
configuration parameters within your model 5-13

Project Creation from a Model: Quickly organize your model
and all dependent files . 5-14

xviii Contents

Faster, Improved Dependency Analysis: Analyze projects
several times faster, identify referenced project files, and
view library blocks . 5-15

Management of shadowed and dirty files 5-15
Comparison of any pair of file revisions 5-16
Updated power window example . 5-16
Case-sensitive model and library names 5-16
Warning for Model Info Configuration Manager 5-16

Data Management . 5-18

Interval Logging: Specify start and stop time intervals to log
only the data you need . 5-18

Always-On Tunability: Tune all block parameters and
workspace variables during a simulation 5-18

Arrays of structures as parameters 5-23
Improved methods to create custom data objects 5-24

Model Explorer . 5-24
Data Object Wizard . 5-24

No creation of parameter objects for mask initialization code 5-24
Sample time for signal logging . 5-25
Same format for logging states, output, and final states as used

for other logging and loading techniques 5-25
Root Inport loading in rapid accelerator mode using Dataset

format . 5-25
Logged signals with propagated names 5-25
Tolerance for data type mismatch between bus elements and

structure fields . 5-26
Summary of changes made to data dictionary 5-26
Rename All in Goto blocks . 5-27
Change to visibility of SamplingMode property of signal

objects . 5-27
Continued availability of Simulink.saveVars 5-27
Simulink.SimulationData.Dataset updates 5-27
Edit Input button is now Connect Input 5-28
Legacy Code Tool support for conditional outputs 5-28

Connection to Hardware . 5-29

Raspberry Pi 2 Support: Run Simulink models on Raspberry Pi
2 Model B hardware . 5-29

Arduino Yun: Design and run Simulink models on Arduino Yun
hardware . 5-29

xix

Hardware Implementation Selection: Quickly generate code for
popular embedded processors . 5-29

Signal Management . 5-32

Virtual bus signal inputs to blocks that require nonbus or
nonvirtual bus input . 5-32

Entire nested bus assignment for Bus Assignment block . . . 5-33

Block Enhancements . 5-34

Waveform Generator Block: Define and output arbitrary
waveform signals . 5-34

From Spreadsheet Block: Read signal data into Simulink from a
spreadsheet . 5-34

MATLAB System block support for nonvirtual buses 5-34
Inport block update . 5-34
From File updates for file name and signal preview 5-34
Inheriting of continuous sample time for discrete blocks . . . 5-34
Evenly spaced breakpoints in Lookup Tables 5-35
Integrator block: Wrapped states for modeling rotary and cyclic

state trajectories . 5-35
Variant Subsystem block: Enhanced option for generating

preprocessor conditionals . 5-35
Constant sample time in S-function blocks 5-36

MATLAB Function Blocks . 5-37

Calling of Simulink Functions . 5-37
Nondirect feedthrough in MATLAB Function blocks 5-37
Overflow and data range detection settings unified with

Simulink . 5-37
No frame-based sampling mode for outputs 5-39
Code generation for cell arrays . 5-39
LAPACK calls during simulation for algorithms that call linear

algebra functions . 5-39
Code generation for additional Image Processing Toolbox and

Computer Vision System Toolbox functions 5-40
Image Processing Toolbox . 5-40
Computer Vision System Toolbox 5-40

Code generation for additional Statistics and Machine Learning
Toolbox functions . 5-40

Code generation for additional MATLAB functions 5-40
Data Types in MATLAB . 5-40

xx Contents

String Functions in MATLAB 5-41
Code generation for additional Communications System

Toolbox, DSP System Toolbox, and Phased Array System
Toolbox functions and System objects 5-41

Communications System Toolbox 5-41
DSP System Toolbox . 5-41
Phased Array System Toolbox 5-41

R2015a

Simulink Editor . 6-2

Bus Smart Editing Cue: Automatically create a bus from a set
of signals . 6-2

Area Annotations: Call out and separate regions of interest in
model . 6-2

Perspectives Controls: Access alternative views of your model,
such as harness and interface views 6-3

Saving of viewmarks in Simulink models 6-4
Highlighting of the subsystem you navigated from 6-4
Annotation connector colors and width 6-4
Undo and redo of block parameter value changes 6-5
Display of product name in model title bar 6-5

Simulation Analysis and Performance 6-6

Dashboard Block Library: Tune and test simulations with
graphical controls and displays . 6-6

Algebraic Loop Highlighting: Find and remove algebraic loops
in the model to boost simulation speed 6-6

Faster Simulations with Accelerated Referenced Models: Run
faster consecutive simulations and step back and forth
through simulations . 6-6

Use SimulationMetadata to retrieve simulation metadata
information . 6-7

Simplified conversion of logged data to Dataset format for a
common logged data format . 6-7

Default setting for Automatic solver parameter selection 6-8
Improved heuristic for step size calculation 6-8
Step size details in solver information tooltip 6-8

xxi

Solver information in model after simulation 6-8

Component-Based Modeling . 6-9

Consistent Data Support for Testing Components: Load input
and log data of a component from buses and all data types 6-9

Model Reference Conversion Advisor enhancements 6-9
Reduced algebraic loops during model reference simulation . 6-10
Multi-instance support for nonreusable functions in referenced

models . 6-10
Model referencing checks in Model Advisor to reduce warning

messages . 6-10
Model configuration parameter changes 6-11
Property name change in Simulink.ConfigSetRef 6-12
Flexible structure assignment of buses 6-13
Support for empty subsystems as variant choices 6-13
Conversion of MATLAB variables used in variant control

expressions into Simulink.Parameter objects 6-13

Project and File Management . 6-15

Simulink Project Sharing: Share a project using GitHub, email,
or a MATLAB toolbox . 6-15

Interactively manage the MATLAB search path for your
project . 6-15

Easy viewing and editing of project labels 6-16
Changed file lists and branch deletion in Git Manage Branches

dialog box . 6-16
New preferences to control loading and saving models 6-17
Improved error reporting from get_param, set_param and

save_system . 6-18
Model dependency analysis option to find enumeration

definition files . 6-18
Export to previous version supports seven years 6-19

Data Management . 6-20

Data Dictionary API: Automate the creation and editing of data
dictionaries with MATLAB scripts 6-20

Rename All: Change the name of a parameter and all its
references . 6-20

MATLAB Editor features for editing model workspace code . 6-20
Management of variables from block dialog box fields 6-20
Other Data section added to data dictionary 6-21

xxii Contents

Model-wide renaming of data stores 6-21
Reporting of enumerated types used by model 6-21
Root Inport Mapping tool updates . 6-22

Connection to Educational Hardware 6-23

Simulink Support Package for Apple iOS Devices: Create an
App that runs Simulink models and algorithms on your
Apple iOS device . 6-23

MathWorks response to the Shellshock vulnerability 6-23
Removed support for Gumstix Overo and PandaBoard

hardware . 6-24

Signal Management . 6-25

Array of buses with Unit Delay block 6-25

Block Enhancements . 6-26

Resettable Subsystem block to reset the subsystem states . . 6-26
Conditional display of the Sample Time parameter 6-26
Inheritance of frame-based input returns error 6-26

Input Processing Parameter Set to Inherited 6-27
Inherited Setting on Save 2-D Signals 6-28
Frame-based Inputs Removed for Bias Block 6-28
Frame-based Inputs Removed for Tapped Delay Block . 6-29
Frame-based Input Removed for Transfer Fcn First Order

Block . 6-29
Frame-based Input Removed for Transfer Fcn Lead or Lag

Block . 6-29
Sampling Mode Set to Frame-based 6-30

Scope block to Time Scope Block conversion 6-30
Option to provide PID gains as external inputs to PID

Controller and PID controller (2DOF) blocks 6-31
Improvements for creating System objects 6-32
MATLAB System block support for model coverage analysis 6-32
Enable port on the Delay block . 6-32

MATLAB Function Blocks . 6-33

More efficient generated code for logical indexing 6-33
Faster compile time for large functions and models due to

decreased constant folding limit 6-33
JIT compilation technology to reduce model update time . . . 6-33

xxiii

Code generation for casts to and from types of variables
declared using coder.opaque . 6-34

Improved recognition of compile-time constants 6-35
Code generation for additional Image Processing Toolbox and

Computer Vision System Toolbox functions 6-37
Image Processing Toolbox . 6-37
Computer Vision System Toolbox 6-37

Code generation for additional Communications System
Toolbox, DSP System Toolbox, and Phased Array System
Toolbox System objects . 6-37

Communications System Toolbox 6-37
DSP System Toolbox . 6-38
Phased Array System Toolbox 6-38

Code generation for additional Statistics and Machine Learning
Toolbox functions . 6-38

Code generation for additional MATLAB functions 6-38
Linear Algebra . 6-38
Statistics in MATLAB . 6-39

Code generation for additional MATLAB function options . . 6-39

Model Advisor . 6-40

Multiple instances of advisors . 6-40
Improved advisor startup performance 6-40
Model Advisor check input parameters retained for each

instance of check . 6-41
Model referencing checks in Model Advisor to reduce warning

messages . 6-41

R2014b

Simulink Editor . 7-2

Smart Editing Cues: Accelerate model building with just-in-
time contextual prompts . 7-2

Add and Configure a Block without Leaving a Diagram . 7-2
Insert a Complementary Block 7-3
Perform Actions on a Marquee Selection 7-3
Connect Aligned Blocks Using a Guide 7-4

xxiv Contents

Viewmarks: Save graphical views of a model for quick access to
areas of interest . 7-4

Annotation Connectors: Associate annotations with blocks in
models . 7-5

Edit bar for quick annotation formatting 7-5
Annotation table column and row resizing 7-6
Reuse of annotation text formatting 7-6
Annotation layering . 7-6
Access Diagnostic Viewer from status bar 7-6
Printing to file . 7-6

Simulation Analysis and Performance 7-7

Fast Restart: Run consecutive simulations more quickly 7-7
New Simulation Data Inspector: View live signal data and

access visualization options such as data cursors 7-7
Fixed Point Support for Conditional Breakpoints 7-7
Quick Scan simulation in Performance Advisor for faster

diagnosis . 7-7
Removal of warning when variable-step solver is selected for

discrete models . 7-8
Block callbacks not evaluated in Rapid Accelerator mode with

up-to-date check off . 7-8
Functionality Being Removed or Changed 7-8
Improvements to Scope blocks and Scope viewers 7-9

Component-Based Modeling . 7-10

Model Templates: Build models using design patterns that
serve as starting points to solve common problems 7-10

Simulink Functions: Create and call functions across Simulink
and Stateflow . 7-10

Interface Display: View and trace the input and output signals
of a model or subsystem . 7-10

Model reference conversion enhancements 7-11
Include Simulink Models as Variant Choices 7-12
Arithmetic and Bit-Wise Operators in Variant Condition

Expressions . 7-12
Export of chart-level functions in export-function models . . . 7-12

Project and File Management . 7-13

Block Dependencies in Impact Graph: Highlight the blocks
affected by changes made to project files 7-13

xxv

Identify modified or conflicted folder contents using source
control summary status . 7-13

Simplified file views in Simulink Project 7-14
Simplified browsing and sharing of project templates 7-14
SVN and Git example Simulink Projects 7-14

Data Management . 7-15

Root Import Mapping tool . 7-15
Minimize and maximize buttons for the Configuration

Parameters dialog box . 7-15
Overflow diagnostics to distinguish between wrap and

saturation . 7-15
Change in behavior of isequaln . 7-16
Change in Simulink check for types derived from

Simulink.IntEnumType . 7-16
Methods no longer inherited by Simulink enumerations . . . 7-17

Connection to Educational Hardware 7-18

More Arduino Support: Run your model on Arduino Leonardo,
Mega ADK, Mini, Fio, Pro, Micro and Esplora boards . . . 7-18

Documentation installation with hardware support package 7-18

Signal Management . 7-19

Signal name inheritance from bus object elements 7-19
Faster and more flexible Simulink.Bus.createMATLABStruct

function . 7-19

Block Enhancements . 7-21

Nearest interpolation method available for n-D Lookup Table
Block . 7-21

MATLAB System block updates . 7-21
Level-1 MATLAB S-Functions . 7-21
Unfiltered-derivative option in discrete-time PID Controller

blocks . 7-21

MATLAB Function Blocks . 7-22

Code generation for additional Image Processing Toolbox and
Computer Vision System Toolbox functions 7-22

Image Processing Toolbox . 7-22

xxvi Contents

Computer Vision System Toolbox 7-22
Code generation for additional Communications System

Toolbox and DSP System Toolbox functions and System
objects . 7-22

Communications System Toolbox 7-22
DSP System Toolbox . 7-22

Code generation for ode23 and ode45 ordinary differential
equation solvers in MATLAB . 7-23

Code generation for additional MATLAB functions 7-23
Data and File Management in MATLAB 7-23
Linear Algebra in MATLAB . 7-24
String Functions in MATLAB 7-24

Code generation for additional MATLAB function options . . 7-24
Code generation for enumerated types based on built-in

MATLAB integer types . 7-24
Code generation for function handles in structures 7-25
Collapsed list for inherited properties in code generation

report . 7-25

Model Advisor . 7-26

New check for Unit Delay and Zero-Order Hold blocks that
perform rate transition . 7-26

Highlighted configuration parameters from Model Advisor
reports . 7-26

R2014a

Simulink Editor . 8-2

Annotations with rich text, graphics, and hyperlinks 8-2
Diagnostic Viewer to collect information, warnings, and error

messages . 8-2
Option to bring contents of a hierarchical subsystem into the

parent subsystem with one click . 8-3
Support for native OS touch gestures, such as pinch-to-zoom

and panning . 8-3
Operating system print options for models 8-3
Preference for line crossing style . 8-4
Scalable graphics output to clipboard for Macintosh 8-4

xxvii

Sliders, dials, and spinboxes available as parameter controls in
masks . 8-4

Component-Based Modeling . 8-5

Option to choose default variants . 8-5
Option to choose variants that differ in number of input and

output ports . 8-5
Advisor-based workflow for converting subsystems to Model

blocks . 8-5
Single-model workflow for algorithm partitioning and targeting

of multicore processors and FPGAs 8-5
Easier MATLAB System block creation via autocompletion and

browsing for System object names 8-6
Improved algebraic loop handling and reduced data copies with

the Bus Selector block . 8-6
Faster response time when opening bus routing block dialog

boxes and propagating signal labels 8-7
Usability enhancements to configure a model for concurrent

execution on a target . 8-7
Default setting of Underspecified initialization detection

diagnostic is Simplified . 8-8
Discrete-Time Integrator block has dialog box changes for

initialization . 8-8
System objects Propagates mixin methods 8-8

Simulation Analysis and Performance 8-9

Reduced setup and build time for Model blocks when using
Rapid Accelerator mode . 8-9

Performance Advisor checks that validate overall performance
improvement for all suggested changes and set code
generation option for MATLAB System block 8-10

Improved navigation of the Performance Advisor report . . . 8-10
Block behavior for asynchronous initiator with constant sample

time . 8-10
Global setting for validation of checks in Performance

Advisor . 8-10
Guided setup in Performance Advisor 8-11

Project and File Management . 8-12

Branching support through Git source control 8-12
Comparison of project dependency analysis results 8-12

xxviii Contents

Impact graph layout algorithm improved for easier
identification of top models and their dependencies 8-12

Impact analysis example for finding and running impacted
tests . 8-13

Performance improvements for common scripting operations
such as adding and removing files and labels 8-13

Conflict resolution tools to extract conflict markers 8-13
Updated Power Window Example . 8-13

Data Management . 8-14

Data dictionary for defining and managing design data
associated with models . 8-14

Rapid Accelerator mode signal logging enhanced to avoid
rebuilds and to support buses and referenced models . . . 8-14

Simplified tuning of all parameters in referenced models . . . 8-14
Simulink.findVars supported in referenced models 8-15
Saving workspace variables and their values to a MATLAB

script . 8-16
Frame-based signals in the To Workspace block 8-16
Simulation mode consistency for Data Import/Export pane

output options parameter . 8-17
Dimension mismatch handling for root Inport blocks

improved . 8-17
Simulink.Bus.createObject support for structures of timeseries

objects . 8-18
Signal logging override for model reference variants 8-18
Improved To Workspace block default for fixed-point data . . 8-18
Legacy Code Tool support for 2–D row-major matrix 8-19
Model Explorer property name filtering refined 8-19

Connection to Educational Hardware 8-20

Support for Arduino Due hardware 8-20
Support for Arduino WiFi Shield hardware 8-20
Support for LEGO MINDSTORMS EV3 hardware 8-20
Updates to support for LEGO MINDSTORMS NXT

hardware . 8-21
Support for Samsung GALAXY Android devices 8-21

Block Enhancements . 8-23

Enumerated data types in the Direct Lookup Table (n-D)
block . 8-23

xxix

Improved performance and code readability in linear search
algorithm for Prelookup and n-D Lookup Table blocks . . . 8-23

System object file templates . 8-23
Relay block output of fixed-in-minor-step continuous signal for

continuous input . 8-23

MATLAB Function Blocks . 8-24

Generating Simulation Target typedefs for imported bus and
enumerated data types . 8-24

Complex data types in data stores 8-24
Unicode character support for MATLAB Function block

names . 8-24
Support for int64 and uint64 data types in MATLAB Function

blocks . 8-24
Streamlined MEX compiler setup and improved

troubleshooting . 8-24
Code generation for additional Image Processing Toolbox

functions . 8-24
Image Processing Toolbox . 8-24

Code generation for additional Signal Processing Toolbox,
Communications System Toolbox, and DSP System Toolbox
functions and System objects . 8-25

Signal Processing Toolbox . 8-25
Communications System Toolbox 8-25
DSP System Toolbox . 8-25

Code generation for MATLAB fminsearch optimization
function, additional interpolation functions, and additional
interp1 and interp2 interpolation methods 8-26

Code generation for fread function 8-26
Enhanced code generation for switch statements 8-27
Code generation for value classes with set.prop methods . 8-27
Code generation error for properties that use AbortSet

attribute . 8-27
Toolbox functions for code generation 8-27

Modeling Guidelines . 8-30

Modeling guidelines for high-integrity systems 8-30

Model Advisor . 8-31

xxx Contents

Improved navigation of the Model Advisor report, including
a navigation pane, collapsible content, and filters based on
check status . 8-31

Option to run Model Advisor checks in the background 8-31
Upgrade Advisor check for get_param calls for block

CompiledSampleTime . 8-31
Upgrade Advisor check for signal logging in Rapid Accelerator

mode . 8-32

R2013b

New Simulink Editor . 9-2

Ability to add rich controls, links, and images to customized
block interfaces using the Mask Editor 9-2

Content preview for subsystems and Stateflow charts 9-2
Comment-through capability to temporarily delete blocks and

connect input signals to output signals 9-2
New options added to find_system command 9-3
Visual cues for signal lines that cross 9-3
UTF-16 character support for block names, signal labels, and

annotations in local languages . 9-4
Unified Print Model dialog box for printing 9-4
Block Parameters dialog box access from Block Properties

dialog box . 9-5
Notification bar icon indicator for multiple notifications 9-5

Component-Based Modeling . 9-6

MATLAB System block for including System objects in
Simulink models . 9-6

Variant Manager that manages all the variants in a model in
one place . 9-6

Improved componentization capabilities for modeling
scheduling diagrams with root-level function-call inports . . 9-6

Array of buses signal logging in model reference accelerator
mode . 9-6

Ability to add, delete, and move input signals within Bus
Creator block . 9-6

xxxi

Streamlined approach to migrating from Classic to Simplified
initialization mode . 9-7

Simplified display of sorted execution order 9-7
Enhanced model reference rebuild algorithm for MATLAB

Function blocks . 9-7

Simulation Analysis and Performance 9-8

LCC compiler included on Windows 64-bit platform for running
simulations . 9-8

Signal logging in Rapid Accelerator mode 9-8
Performance Advisor checks for Rapid Accelerator mode and

data store memory diagnostics . 9-8
Long long integers in simulation targets for faster simulation

on Win64 machines . 9-9
Auto-insertion of rate transition block 9-9
Compiled sample time for multi-rate blocks returns cell array of

all sample times . 9-10
Improvement to model reference parallel build check in

Performance Advisor . 9-12
Improved readability in Performance Advisor reports 9-12
Simulation Data Inspector launch using simplot command . 9-12

Project and File Management . 9-13

Impact analysis by exploring modified or selected files to find
dependencies . 9-13

Option to export impact analysis results to the workspace,
batch processing, or image files . 9-13

Identification of requirements documents during project
dependency analysis . 9-13

Simplified label creation by dragging a label onto files in any
view . 9-14

Shortcut renaming, grouping, and execution from any view
using the Toolstrip . 9-14

Data Management . 9-16

Streamlined selection of one or more signals for signal
logging . 9-16

Simplified modeling of single-precision designs 9-16
New option to set default for underspecified data types 9-16
Operations between singles and integer or fixed-point data

types avoid use of doubles . 9-17

xxxii Contents

Connection status visualization and connection method
customization for root inport mapping 9-18

Conversion of numeric variables into Simulink.Parameter
objects . 9-18

Model Explorer search options summary hidden by default . 9-19
Simulink.DualScaledParameter class 9-19
Legacy data type specification functions return numeric

objects . 9-19
Root Inport Mapping Error Messages 9-22
Root inport mapping example . 9-22

Connection to Educational Hardware 9-23

Ability to run models on target hardware from the Simulink
toolbar . 9-23

Support for Arduino hardware available on Mac OS X 9-24
Support for Arduino Ethernet Shield and Arduino Nano 3.0

hardware . 9-24

Signal Management . 9-25

Port number display to help resolve error messages 9-25
Enforced bus diagnostic behavior . 9-25

Block Enhancements . 9-27

Improved performance of LUT block intermediate
calculations . 9-27

Name changes that unify storage class parameters 9-27
Warnings when using old parameter names with spaces . . . 9-27
Strictly monotonically increasing time values on Repeating

Sequence block . 9-28
pow function in Math function block that supports Code

Replacement Library (CRL) . 9-28
Continuous Linear Block improvements, such as diagnostics,

readability, and stricter checks . 9-28

MATLAB Function Blocks . 9-29

Code generation for Statistics Toolbox and Phased Array
System Toolbox . 9-29

Toolbox functions for code generation 9-29
External C library integration using

coder.ExternalDependency . 9-30

xxxiii

Updating build information using coder.updateBuildInfo . . 9-30
Conversion of MATLAB expressions into C constants using

coder.const . 9-30
Highlighting of constant function arguments in the compilation

report . 9-30
coder.target syntax change . 9-30
LCC compiler included on Windows 64-bit platform for running

simulations . 9-31

Modeling Guidelines . 9-32

Modeling guidelines for high-integrity systems 9-32

Model Advisor . 9-33

Collapsible content within Model Advisor reports 9-33
Reorganization of Model Advisor checks 9-33
Check for strict single precision usage 9-33

R2013a

New Simulink Editor . 10-2

Reordering of tabs in tabbed windows 10-2
Scalable vector graphics for mask icons 10-2
Simulation Stepper Default Value Change 10-2

Component-Based Modeling . 10-3

Direct active variant control via logical expressions 10-3
Live update for variant systems and commented-out blocks . 10-3
Masking of linked library blocks . 10-3
Target profiling for concurrent execution to visualize task

execution times and task-to-core assignment 10-3
Incremental block-to-task mapping workflow support enabled

by automatic block-to-task assignment for multicore
execution on embedded targets . 10-4

PIL and SIL modes for concurrent execution 10-4
Parameterized task periods for concurrent execution 10-4
Relaxed configuration parameter setting requirements 10-4

xxxiv Contents

Connection to Educational Hardware 10-5

Support for Gumstix Overo hardware 10-5
Support for Raspberry Pi hardware 10-5
Blocks for GPIO, LED, and eSpeak Text to Speech on

BeagleBoard . 10-6
Blocks for GPIO, LED, and eSpeak Text to Speech on

PandaBoard . 10-7
Blocks for Compass and IR Receiver sensors on LEGO

MINDSTORMS NXT . 10-7

Project and File Management . 10-8

Simplified scripting interface for automating Simulink Project
tasks . 10-8

Option to use elements from multiple templates when creating
a new project . 10-8

Saving and reloading of dependency analysis results 10-8
Robust loading of projects with conflicted metadata project

definition files . 10-8
New project preferences to control logging and warnings . . . 10-9

Data Management . 10-10

Fixed-Point Advisor support for model reference 10-10
Arrays of buses loading and logging 10-10
Root Inport Mapping tool changes 10-10
New Root Inport Mapping Examples 10-10
Level-1 data classes not supported 10-11
Simulink data type classes do not support inexact enumerated

property value matching . 10-12

Simulation Analysis and Performance 10-13

Simulation Performance Advisor report that shows both check
results and actions taken . 10-13

Improved simulation performance when stepping back is
enabled . 10-13

Simulation Data Inspector run-configuration options for names
and placement in run list . 10-13

Arrays of buses displayed in Simulation Data Inspector . . 10-13
Simulation Data Inspector overwrite run specification 10-13

Signal Management . 10-14

xxxv

Referenced models sample times . 10-14
Triggered subsystem sample times 10-14
Simulation of variable-size scalar signals 10-14

Block Enhancements . 10-15

CORDIC approximation method for atan2 function of
Trigonometric Function block . 10-15

Product and Gain blocks support Basic Linear Algebra
Subprogram (BLAS) library . 10-15

Performance Advisor check for Delay block circular buffer
setting . 10-15

MATLAB Function Blocks . 10-16

Masking of MATLAB Function blocks to customize appearance,
parameters, and documentation 10-16

File I/O function support . 10-16
Support for nonpersistent handle objects 10-16
Include custom C header files from MATLAB code 10-17
Load from MAT-files . 10-17
coder.opaque function enhancements 10-17
Complex trigonometric functions . 10-18
Support for integers in number theory functions 10-18
Enhanced support for class property initial values 10-19
Default use of Basic Linear Algebra Subprograms (BLAS)

Libraries . 10-20
New toolbox functions supported for code generation 10-20
Function being removed . 10-21

Modeling Guidelines . 10-22

Modeling Guidelines for High-Integrity Systems 10-22
MathWorks Automotive Advisory Board Control Algorithm

Modeling Guidelines Using MATLAB, Simulink, and
Stateflow . 10-22

Model Advisor . 10-23

Model Advisor checks reorganized in a future release 10-23
Model Advisor navigation between Upgrade Advisor,

Performance Advisor, and Code Generation Advisor . . . 10-23
Report . 10-23

Single file HTML . 10-23

xxxvi Contents

Format . 10-23
Preferences dialog box . 10-23
By Product folder not displayed . 10-24

R2012b

New Simulink Editor . 11-2

Tabbed windows and automatic window reuse to minimize
window clutter . 11-2

Smart signal routing that determines the simplest signal line
path without overlapping blocks 11-3

Explorer bar to help with navigating through a model 11-3
Simulation stepper to simulate and rewind a model one step at

a time . 11-4
Ability to comment out blocks . 11-4
Subsystem badges to identify and look under masked

subsystems . 11-4
Reorganized menu to fit common Model-Based Design

workflow . 11-4
Palette for commonly used actions 11-5
Panning and zooming . 11-5
Display of overlapping blocks . 11-6
Unification of Simulink and Stateflow Editors 11-6
Simulink Editor preferences . 11-6
Toolbar and status bar control . 11-7
Visual editing based on model objects 11-7
Improved callback error handling . 11-7
Simulink Editor Changes . 11-7

Mapping from R2012a Simulink Editor to the New
Simulink Editor . 11-8

File Menu . 11-8
Edit Menu . 11-9
View Menu . 11-9
Simulation Menu . 11-10
Format Menu . 11-11
Tools Menu . 11-12
Help Menu . 11-13
Simulink Editor Context Menu Changes 11-14

xxxvii

Simulink Editor Mouse and Keyboard Shortcut
Changes . 11-16

Simulink Editor Badges Changes 11-19
Simulink Preferences Changes 11-19
Simulink and Stateflow Editor Customization

Changes . 11-20

Connection to Educational Hardware 11-21

Support for Arduino and PandaBoard hardware 11-21
Support for Arduino Mega 2560 and Arduino Uno

hardware . 11-21
Support for PandaBoard hardware 11-22

Bluetooth download to LEGO MINDSTORMS NXT
hardware . 11-22

Performance . 11-23

Simulation Performance Advisor that analyzes your model
and provides advice on how to increase simulation
performance . 11-23

Project and File Management . 11-24

Simulink default file format SLX that uses the OPC
standard . 11-24

Simulink Upgrade Advisor to help migrate files to the current
release . 11-25

Built-in SVN adapter for Simulink Projects that provides
connectivity to SVN and support for server-based
repositories . 11-26

Simulink Project Tool dependency graph that provides
highlights by file type, dependency type, and label 11-26

Redesigned graphical tool for efficient Simulink Projects
workflow . 11-26

Batch operation support for files in a Simulink Project . . . 11-27
Create and open recent Simulink Projects from MATLAB . 11-27

Block Enhancements . 11-29

Menu item to convert configurable and normal subsystems to
variant subsystems . 11-29

xxxviii Contents

Masking improvements, including the ability to reuse masks,
delete existing masks on blocks, and use the shortcut
operator || in mask callback code 11-29

Default output data type of Logic blocks changed to
boolean . 11-29

Signal Attributes tab of dialog box for Operator blocks
renamed to Data Type . 11-30

Parameter name changes for Unit Delay block 11-30
New variants of Delay block in Discrete library 11-30
Some Probe block parameters no longer support boolean data

type . 11-32
Internationalization of block dialog box titles and buttons and

block tooltips . 11-32
Enabled and triggered subsystems 11-33

Data Management . 11-34

Variable Editor access from within Model Explorer 11-34
Logged simulation data from Simulation Data Inspector

accessible from Simulink toolbar 11-35
Specify verifySignalAndModelPaths action 11-35
Import and map data to root-level input ports 11-35
Dataset signal logging format for increased flexibility and ease

of use . 11-35
Data type field displays user-defined data types 11-36
Simulink.VariableUsage to get variable information . . 11-37
Customizable line specification in Simulation Data

Inspector . 11-37
Simulation Data Inspector report includes harness model

information . 11-37

Component-Based Modeling . 11-38

Model configuration for targets with multicore processors . 11-38
New Simulink.GlobalDataTransfer class 11-38
Reduced memory usage in models with many library links 11-38
Configuration Reference dialog box to propagate and undo

configuration settings to all referenced models 11-39
Context-dependent function-call subsystem input handling

improved . 11-39
Simulink.Variant object and the model InitFcn 11-41

Signal Management . 11-42

xxxix

Sample time propagation changes 11-42
Signal Builder . 11-42

User Interface Enhancements . 11-43

Model Advisor Dashboard . 11-43
Show partial or whole model hierarchy contents 11-43
Improved icons for model objects . 11-45
Simulink Debugger . 11-45
Multiple modifiers for custom accelerators 11-45

Model Advisor Checks . 11-46

Verify Syntax of Library Models . 11-46

MATLAB Function Blocks . 11-47

New toolbox functions supported for code generation 11-47
New System objects supported for code generation 11-48

R2012a

Component-Based Modeling . 12-2

Interactive Library Forwarding Tables for Updating Links . 12-2
Automatic Refresh of Links and Model Blocks 12-2
Model Configuration for Targets with Multicore Processors . 12-3

MATLAB Function Blocks . 12-5

Integration of MATLAB Function Block Editor into MATLAB
Editor . 12-5

Code Generation for MATLAB Objects 12-5
Specification of Custom Header Files Required for Enumerated

Types . 12-5

Data Management . 12-6

New Infrastructure for Extending Simulink Data Classes Using
MATLAB Class Syntax . 12-6

xl Contents

Change in Behavior of isequal . 12-7
isContentEqual Will Be Removed in a Future Release 12-8
Change in Behavior of int32 Property Type 12-8
RTWInfo Property Renamed . 12-8
deepCopy Method Will Be Removed in a Future Release . . . 12-9
New Methods for Querying Workspace Variables 12-9
Default Package Specification for Data Objects 12-9
Simulink.Parameter Enhancements 12-10
Custom Storage Class Specification for Discrete States on Block

Dialog Box . 12-10
Enhancement to set_param . 12-10
Simulink.findVars Support for Active Configuration Sets . 12-11
Bus Support for To File and From File Blocks 12-12
Bus Support for To Workspace and From Workspace Blocks 12-12
Logging Fixed-Point Data to the To Workspace Block 12-12
Improved Algorithm for Best Precision Scaling 12-12
Enhancement of Mask Parameter Promotion 12-13

File Management . 12-14

SLX Format for Model Files . 12-14
Simulink Project Enhancements . 12-15

Signal Management . 12-17

Signal Hierarchy Viewer . 12-17
Signal Label Propagation Improvements 12-17
Frame-Based Processing: Inherited Option of the Input

Processing Parameter Now Provides a Warning 12-18
Logging Frame-Based Signals . 12-19
Frame-Based Processing: Model Reference 12-20
Removing Mixed Frameness Support for Bus Signals on Unit

Delay and Delay . 12-21

Block Enhancements . 12-22

Delay Block Accepts Buses and Variable-Size Signals at the
Data Input Port . 12-22

n-D Lookup Table Block Has New Default Settings 12-22
Blocks with Discrete States Can Specify Custom Storage

Classes in the Dialog Box . 12-23
Inherited Option of the Input Processing Parameter Now

Provides a Warning . 12-23

xli

User Interface Enhancements . 12-25

Model Advisor: Highlighting . 12-25
Model Explorer: Grouping Enhancements 12-25
Model Explorer: Row Filter Button 12-26
Simulation Data Inspector Enhancements 12-26

Signal Data Organization . 12-26
Block Name Column . 12-26
Plot Check Box Moved . 12-27
Parallel Simulation Support 12-27

Port Value Displays . 12-27

Modeling Guidelines . 12-28

Modeling Guidelines for High-Integrity Systems 12-28
MathWorks Automotive Advisory Board Control Algorithm

Modeling Guidelines Using MATLAB, Simulink, and
Stateflow . 12-28

Execution on Target Hardware . 12-29

New Feature for Running Models Directly from Simulink on
Target Hardware . 12-29

R2011b

Simulation Performance . 13-2

Accelerator Mode Now Supports Algebraic Loops 13-2

Component-Based Modeling . 13-3

For Each Subsystem Support for Continuous Dynamics . . . 13-3
Enable Port as an Input to a Root-Level Model 13-3
Finder Option for Looking Inside Referenced Models 13-3
Improved Detection for Rebuilding Model Reference

Targets . 13-4
Model Reference Target Generation Closes Unneeded

Libraries . 13-4
Concurrent Execution Support . 13-4

xlii Contents

Finer Control of Library Links . 13-5
Mask Built-In Blocks with the Mask Editor 13-5
Parameter Checking in Masked Blocks 13-5
Menu Options to Control Variants 13-6

MATLAB Function Blocks . 13-7

Simulation Supported When the Current Folder Is a UNC
Path . 13-7

Simulink Data Management . 13-8

Default Design Minimum and Maximum are []/[], Not -inf/
inf . 13-8

Bus Elements Now Have Design Minimum and Maximum
Properties . 13-8

Compiled Design Minimum and Maximum Values Exposed on
Block Inport and Outport . 13-9

Command-Line Interface for Accessing Compiled Design
Minimum and Maximum . 13-9

Back-Propagated Minimum and Maximum of Portion of Wide
Signal Are Now Ignored . 13-9

Easier Importing of Signal Logging Data 13-10
Partial Specification of External Input Data 13-10
Command-Line Interface for Signal Logging 13-10
Access to the Data Import/Export Pane from the Signal Logging

Selector . 13-11
Inexact Property Names for User-Defined Data Objects Will

Not Be Supported in a Future Release 13-11
Alias Types No Longer Supported with the

slDataTypeAndScale Function . 13-12
Simulink.StructType Objects Will Not Be Supported in a

Future Release . 13-12
Old Block-specific Data Type Parameters No Longer

Supported . 13-12
Simulink.Signal and Simulink.Parameter Will Not Accept

Input Arguments . 13-12
Data Import/Export Pane Changes 13-13
Simulation Data Inspector Tool Replaces Time Series Tool 13-13

Simulink File Management . 13-14

Project Management . 13-14

xliii

Simulink Signal Management . 13-15

Signal Conversion Block Enhancements 13-15
Environment Controller Block Support for Non-Bus Signals 13-16
Sample Time Propagation Changes 13-16
Frame-Based Processing . 13-17

Block Enhancements . 13-19

New Delay Block That Upgrades the Integer Delay Block . 13-19
Sqrt and Reciprocal Sqrt Blocks Support Explicit Specification

of Intermediate Data Type . 13-22
Discrete Zero-Pole Block Supports Single-Precision Inputs and

Outputs . 13-23
n-D Lookup Table Block Supports Tunable Table Size 13-23
Boolean Output Data Type Support for Logic Blocks 13-24
Derivative Block Parameter Change 13-25

User Interface Enhancements . 13-26

Model Explorer: First Two Columns in Contents Pane Remain
Visible . 13-26

Model Explorer: Subsystem Code View Added 13-26
Model Explorer: New Context Menu Options for Model

Configurations . 13-26
Simulation Data Inspector Enhancements 13-27

Command-Line Interface . 13-27
Report Generation . 13-27
Support of Scope, To File, and To Workspace Blocks . 13-28

Conversion of Error and Warning Message Identifiers 13-28

New Modeling Guidelines . 13-29

Modeling Guidelines for High-Integrity Systems 13-29
Modeling Guidelines for Code Generation 13-29

R2011a

Simulation Performance . 14-2

xliv Contents

Restore SimState in Models Created in Earlier Simulink
Versions . 14-2

Improved Absolute Tolerance Implementation 14-2

Component-Based Modeling . 14-3

Refreshing Linked Blocks and Model Blocks 14-3
Enhanced Model Block Displays Variant Model Choices . . . 14-3
Creating a Protected Model Using the Simulink Editor 14-3

MATLAB Function Blocks . 14-4

Embedded MATLAB Function Block Renamed as MATLAB
Function Block . 14-4

Support for Buses in Data Store Memory 14-4

Simulink Data Management . 14-5

Signal Logging Selector . 14-5
Dataset Format Option for Signal Logging Data 14-5
From File Block Supports Zero-Crossing Detection 14-6
Signal Builder Block Now Supports Virtual Bus Output . . . 14-6
Signal Builder Block Now Shows the Currently Active

Group . 14-7
signalbuilder Function Change . 14-7
Range-Checking Logic for Fixed-Point Data During Simulation

Improved . 14-7
Data Object Wizard Now Supports Boolean, Enumerated, and

Structured Data Types for Parameters 14-8
Error Now Generated When Initialized Signal Objects Back

Propagate to Output Port of Ground Block 14-9
No Longer Able to Set RTWInfo or CustomAttributes Property

of Simulink Data Objects . 14-9
Global Data Stores Now Treat Vector Signals as One or Two

Dimensional . 14-10
No Longer Able to Use Trigger Signals Defined as

Enumerations . 14-10
Conversions of Simulink.Parameter Object Structure Field

Data to Corresponding Bus Element Type Supported for
double Only . 14-11

Simulink.CustomParameter and Simulink.CustomSignal Data
Classes To Be Deprecated in a Future Release 14-11

Parts of Data Class Infrastructure No Longer Available . . 14-12

xlv

Simulink Signal Management . 14-13

Data Store Support for Bus Signals 14-13
Accessing Bus and Matrix Elements in Data Stores 14-13
Array of Buses Support for Permute Dimensions, Probe, and

Reshape Blocks . 14-14
Using the Bus Editor to Create Simulink.Parameter Objects

and MATLAB Structures . 14-14

Block Enhancements . 14-15

Lookup Table, Lookup Table (2-D), and Lookup Table (n-
D) Blocks Replaced with Newer Versions in the Simulink
Library . 14-15

Magnitude-Angle to Complex Block Supports CORDIC
Algorithm and Fixed-Point Data Types 14-19

Trigonometric Function Block Supports Complex Exponential
Output . 14-21

Shift Arithmetic Block Supports Specification of Bit Shift
Values as Input Signal . 14-21

Multiple Lookup Table Blocks Enable Removal of Range-
Checking Code . 14-22

Enhanced Dialog Layout for the Prelookup and Interpolation
Using Prelookup Blocks . 14-25

Product of Elements Block Uses a Single Algorithm for
Element-Wise Complex Division 14-26

Sign Block Supports Complex Floating-Point Inputs 14-27
MATLAB Fcn Block Renamed to Interpreted MATLAB

Function Block . 14-27
Environment Controller Block Port Renamed from RTW to

Coder . 14-27
Block Parameters on the State Attributes Tab Renamed . . 14-27
Block Parameters and Values Renamed for Lookup Table

Blocks . 14-28
Performance Improvement for Single-Precision Computations of

Elementary Math Operations . 14-28
Dead Zone Block Expands the Region of Zero Output 14-29
Enhanced PID Controller Blocks Display Compensator Formula

in Block Dialog Box . 14-29
Ground Block Always Has Constant Sample Time 14-29
New Function-Call Feedback Latch Block 14-30
Outport Driving Merge Block Does Not Require IC in Simplified

Initializaton Mode . 14-31

xlvi Contents

Discrete Filter, Discrete FIR Filter, and Discrete Transfer Fcn
Blocks Now Have Input Processing Parameter 14-31

Model Blocks Can Now Use the GetSet Custom Storage
Class . 14-32

User Interface Enhancements . 14-33

Model Explorer: Hiding the Group Column 14-33
Simulation Data Inspector Enhancements 14-33

Multiple Plots in a View . 14-33
Display Run Properties . 14-35
New Toolbar Icons . 14-35

Model Advisor . 14-35
Configuration Parameters Dialog Box Changes 14-36

S-Functions . 14-37

S-Functions Generated with legacy_code function
and singleCPPMexFile S-Function Option Must Be
Regenerated . 14-37

R2010bSP2

Bug Fixes

R2010bSP1

Bug Fixes

xlvii

R2010b

Simulation Performance . 17-2

Elimination of Regenerating Code for Rebuilds 17-2

Component-Based Modeling . 17-3

Model Workspace Is Read-Only During Compilation 17-3
Support for Multiple Normal Mode Instances of a Referenced

Model . 17-3
New Variant Subsystem Block for Managing Subsystem Design

Alternatives . 17-4
Support for Bus and Enumerated Data Types on Masks . . . 17-4
sl_convert_to_model_reference Function Removed 17-4
Verbose Accelerator Builds Parameter Applies to Model

Reference SIM Target Builds in All Cases 17-5

Embedded MATLAB Function Blocks 17-6

Specialization of Embedded MATLAB Function Blocks in
Simulink Libraries . 17-6

Support for Creation and Processing of Arrays of Buses . . . 17-6
Ability to Include MATLAB Code as Comments in Generated C

Code . 17-6
Data Properties Dialog Box Enhancements 17-6

Parameter Being Removed in Future Release 17-7

Simulink Data Management . 17-8

Enhanced Support for Bus Objects as Data Types 17-8
Enhancements to Simulink.NumericType Class 17-9
Importing Signal Data Sets into the Signal Builder Block . . 17-9
signalbuilder Function Changes . 17-10
From File Block Enhancements . 17-10
Finding Variables Used by a Model or Block 17-11
enumeration Function Replaced With MATLAB Equivalent 17-11
Programmatic Creation of Enumerations 17-11
Simulink.Signal and Simulink.Parameter Objects Now Obey

Model Data Type Override Settings 17-12

Simulink File Management . 17-13

xlviii Contents

Autosave Upgrade Backup . 17-13
Model Dependencies Tools . 17-13

Simulink Signal Management . 17-14

Arrays of Buses . 17-14
Loading Bus Data to Root Input Ports 17-15

Block Enhancements . 17-17

Prelookup Block Supports Dynamic Breakpoint Data 17-17
Interpolation Using Prelookup Block Supports Dynamic Table

Data . 17-17
Multiport Switch Block Supports Specification of Default Case

for Out-of-Range Control Input 17-17
Switch Block Icon Shows Criteria and Threshold Values . . 17-17
Trigonometric Function Block Supports Expanded Input Range

for CORDIC Algorithm . 17-18
Repeating Sequence Stair Block Supports Enumerated Data

Types . 17-18
Abs Block Supports Specification of Minimum Output

Value . 17-19
Saturation Block Supports Logging of Minimum and Maximum

Values for the Fixed-Point Tool 17-19
Vector Concatenate Block Now Appears in the Commonly Used

and Signal Routing Libraries . 17-19
Model Discretizer Support for Second-Order Integrator

Block . 17-19
Integer Delay and Unit Delay Blocks Now Have Input

Processing Parameter . 17-19
Data Store Read Block Sample Time Default Changed to -1 17-20
Support of Frame-Based Signals Being Removed From the Bias

Block . 17-21
Relaxation of Limitations for Function-Call Split Block . . . 17-21

User Interface Enhancements . 17-22

Model Explorer and Command-Line Support for Saving and
Loading Configuration Sets . 17-22

Model Explorer: Grouping by a Property 17-22
Model Explorer: Filtering Contents 17-23
Model Explorer: Finding Variables That Are Used by a Model or

Block . 17-23
Model Explorer: Finding Blocks That Use a Variable 17-24

xlix

Model Explorer: Exporting and Importing Workspace
Variables . 17-24

Model Explorer: Link to System . 17-25
Lookup Table Editor Can Now Propagate Changes in Table

Data to Workspace Variables with Nonstandard Data
Format . 17-25

Enhanced Designation of Hybrid Sample Time 17-25
Inspect Solver Jacobian Pattern . 17-25
Inspection of Values of Elements in Checksum 17-25
Conversion of Error and Warning Messages Identifiers . . . 17-26
View and Compare Logged Signal Data from Multiple

Simulations Using New Simulation Data Inspector Tool 17-26
Viewing Requirements Linked to Model Objects 17-26

S-Functions . 17-28

Legacy Code Tool Support for Arrays of Simulink.Bus 17-28
S-Functions Generated with legacy_code function

and singleCPPMexFile S-Function Option Must Be
Regenerated . 17-28

Level-2 M-File S-Function Block Name Changed to Level-2
MATLAB S-Function . 17-28

Functions Removed . 17-29

Function Being Removed in a Future Release 17-29

R2010a

Simulation Performance . 18-2

Computation of Sparse and Analytical Jacobian for Implicit
Simulink Solvers . 18-2

Sparse Perturbation Support for RSim and Rapid Accelerator
Mode . 18-2

Increased Accuracy in Detecting Zero-Crossing Events 18-2
Saving Code Generated by Accelerating Models to slprj

Folder . 18-2

Component-Based Modeling . 18-3

l Contents

Defining Mask Icon Variables . 18-3
For Each Subsystem Block . 18-3
New Function-Call Split Block . 18-4
Trigger Port Enhancements . 18-4

Embedded MATLAB Function Blocks 18-6

New Ability to Use Global Data . 18-6
Support for Logical Indexing . 18-6
Support for Variable-Size Matrices in Buses 18-6
Support for Tunable Structure Parameters 18-6
Check Box for 'Treat as atomic unit' Now Always Selected . . 18-6

Simulink Data Management . 18-8

New Function Finds Variables Used by Models and Blocks . 18-8
MATLAB Structures as Tunable Structure Parameters 18-8
Simulink.saveVars Documentation Added 18-8
Custom Floating-Point Types No Longer Supported 18-9
Data Store Logging . 18-9
Models with No States Now Return Empty Variables 18-10
To File Block Enhancements . 18-10
From File Block Enhancements . 18-11
Root Inport Support for Fixed-Point Data Contained in a

Structure . 18-11

Simulink Signal Management . 18-13

Enhanced Support for Proper Use of Bus Signals 18-13
Bus Initialization . 18-13
S-Functions for Working with Buses 18-14
Command Line API for Accessing Information About Bus

Signals . 18-15
Signal Name Propagation for Bus Selector Block 18-16

Block Enhancements . 18-17

New Square Root Block . 18-17
New Second-Order Integrator Block 18-17
New Find Nonzero Elements Block 18-18
PauseFcn and ContinueFcn Callback Support for Blocks and

Block Diagrams . 18-18
Gain Block Can Inherit Parameter Data Type from Gain

Value . 18-18

li

Direct Lookup Table (n-D) Block Enhancements 18-19
Multiport Switch Block Allows Explicit Specification of Data

Port Indices . 18-19
Trigonometric Function Block Supports CORDIC Algorithm

and Fixed-Point Data Types . 18-21
Enhanced Block Support for Enumerated Data Types 18-21
Lookup Table Dynamic Block Supports Direct Selection of

Built-In Data Types for Outputs 18-22
Compare To Zero and Wrap To Zero Blocks Now Support

Parameter Overflow Diagnostic 18-23
Data Type Duplicate Block Enhancement 18-23
Lookup Table and Lookup Table (2-D) Blocks To Be Deprecated

in a Future Release . 18-23
Elementary Math Block Now Obsolete 18-26
DocBlock Block RTF File Compression 18-27
Simulink Extras PID Controller Blocks Deprecated 18-27

User Interface Enhancements . 18-29

Model Explorer Column Views . 18-29
Model Explorer Display of Masked Subsystems and Linked

Library Subsystems . 18-30
Model Explorer Object Count . 18-30
Model Explorer Search Option for Variable Usage 18-31
Model Explorer Display of Signal Logging and Storage Class

Properties . 18-31
Model Explorer Column Insertion Options 18-31
Diagnostics for Data Store Memory Blocks 18-31
New Command-Line Option for RSim Targets 18-32
Simulink.SimulationOutput.get Method for Obtaining

Simulation Results . 18-32
Simulink.SimState.ModelSimState Class has New

snapshotTime Property . 18-32
Simulink.ConfigSet.saveAs to Save Configuration Sets . . . 18-32

S-Functions . 18-33

Building C MEX-Files from Ada and an Example Ada
Wrapper . 18-33

New S-Function API Checks for Branched Function-Calls . 18-33
New C MEX S-Function API and M-File S-Function Flag for

Compliance with For Each Subsystem 18-33
Legacy Code Tool Enhanced to Support Enumerated Data

Types and Structured Tunable Parameters 18-34

lii Contents

Documentation Improvements . 18-35

Modeling Guidelines for High-Integrity Systems 18-35
MathWorks Automotive Advisory Board Control Algorithm

Modeling Guidelines Using MATLAB, Simulink, and
Stateflow Included in Help . 18-35

R2009bSP1

Bug Fixes

R2009b

Simulation Performance . 20-2

Single-Output sim Syntax . 20-2
Expanded Support by Rapid Accelerator 20-2
SimState Support in Accelerator Mode 20-2
Integer Arithmetic Applied to Sample Hit Computations . . . 20-2
Improved Accuracy of Variable-Step Discrete Solver 20-3

Component-Based Modeling . 20-4

Enhanced Library Link Management 20-4
Enhanced Mask Editor Provides Tabs and Signal

Attributes . 20-4
Model Reference Variants . 20-4
Protected Referenced Models . 20-5
Simulink Manifest Tools . 20-6
S-Function Builder . 20-6

Embedded MATLAB Function Blocks 20-7

Support for Variable-Size Arrays and Matrices 20-7
Change in Text and Visibility of Parameter Prompt for Easier

Use with Fixed-Point Advisor and Fixed-Point Tool 20-7

liii

New Compilation Report for Embedded MATLAB Function
Blocks . 20-7

New Options for Controlling Run-time Checks for Faster
Performance . 20-7

Embedded MATLAB Function Blocks Improve Size Propagation
Behavior . 20-8

Simulink Data Management . 20-9

New Function Exports Workspace Variables and Values . . . 20-9
New Enumerated Constant Block Outputs Enumerated

Data . 20-9
Enhanced Switch Case Block Supports Enumerated Data . . 20-9
Code for Multiport Switch Block Shows Enumerated

Values . 20-9
Data Class Infrastructure Partially Deprecated 20-10
Saving Simulation Results to a Single Object 20-10
Simulation Restart in R2009b . 20-10
Removing Support for Custom Floating-Point Types in Future

Release . 20-10

Simulink File Management . 20-12

Removal of Functions . 20-12
Deprecation of SaveAs to R12 and R13 20-12
Improved Behavior of Save_System 20-12

Simulink Signal Management . 20-13

Variable-Size Signals . 20-13
Simulink Support . 20-13
Simulink Block Support . 20-13

Block Enhancements . 20-14

New Turnkey PID Controller Blocks for Convenient Controller
Simulation and Tuning . 20-14

New Enumerated Constant Block Outputs Enumerated
Data . 20-14

Enhanced Switch Case Block Supports Enumerated Data . 20-15
Code for Multiport Switch Block Shows Enumerated

Values . 20-15
Discrete Transfer Fcn Block Has Performance, Data Type,

Dimension, and Complexity Enhancements 20-15

liv Contents

Lookup Table (n-D) Block Supports Parameter Data Types
Different from Signal Data Types 20-16

Reduced Memory Use and More Efficient Code for Evenly
Spaced Breakpoints in Prelookup and Lookup Table (n-D)
Blocks . 20-17

Math Function Block Computes Reciprocal of Square Root 20-17
Math Function Block Enhancements for Real-Time Workshop

Code Generation . 20-18
Relational Operator Block Detects Signals That Are Infinite,

NaN, or Finite . 20-18
Changes in Text and Visibility of Dialog Box Prompts for Easier

Use with Fixed-Point Advisor and Fixed-Point Tool 20-18
Direct Lookup Table (n-D) Block Enhancements 20-20
Unary Minus Block Enhancements 20-21
Weighted Sample Time Block Enhancements 20-21
Switch Case Block Parameter Change 20-22
Signal Conversion Block Parameter Change 20-22
Compare To Constant and Compare To Zero Blocks Use New

Default Setting for Zero-Crossing Detection 20-22
Signal Builder Block Change . 20-22

User Interface Enhancements . 20-23

Context-Sensitive Help for Simulink Blocks in the Continuous
Library . 20-23

Adding Blocks from a Most Frequently Used Blocks List . . 20-23
Highlighting for Duplicate Inport Blocks 20-23
Using the Model Explorer to Add a Simulink.NumericType

Object . 20-24
Block Output Display Dialog Has OK and Cancel Buttons . 20-24
Improved Definition of Hybrid Sample Time 20-24
Find Option in the Model Advisor 20-24

R2009a

Simulation Performance . 21-2

Saving and Restoring the Complete SimState 21-2
Save Simulink Profiler Results . 21-2

lv

Component-Based Modeling . 21-3

Port Value Displays in Referenced Models 21-3
Parallel Builds Enable Faster Diagram Updates for Large

Model Reference Hierarchies In Accelerator Mode 21-3

Embedded MATLAB Function Blocks 21-5

Support for Enumerated Types . 21-5
Use of Basic Linear Algebra Subprograms (BLAS) Libraries for

Speed . 21-5

Data Management . 21-6

Signal Can Resolve to at Most One Signal Object 21-6
“Signed” Renamed to “Signedness” in the

Simulink.NumericType class . 21-6
“Sign” Renamed to “Signedness” in the Data Type

Assistant . 21-7
Tab Completion for Enumerated Data Types 21-7

Simulink File Management . 21-8

Model Dependencies Tools . 21-8

Block Enhancements . 21-9

Prelookup and Interpolation Using Prelookup Blocks Support
Parameter Data Types Different from Signal Data Types 21-9

Lookup Table (n-D) and Interpolation Using Prelookup Blocks
Perform Efficient Fixed-Point Interpolations 21-9

Expanded Support for Simplest Rounding Mode to Maximize
Block Efficiency . 21-10

New Rounding Modes Added to Multiple Blocks 21-11
Lookup Table (n-D) Block Performs Faster Calculation of Index

and Fraction for Power of 2 Evenly-Spaced Breakpoint
Data . 21-12

Discrete FIR Filter Block Supports More Filter Structures 21-13
Discrete Filter Block Performance, Data Type, Dimension, and

Complexity Enhancements . 21-13
MinMax Block Performs More Efficient and Accurate

Comparison Operations . 21-14
Logical Operator Block Supports NXOR Boolean Operator . 21-14

lvi Contents

Discrete-Time Integrator Block Uses Efficient Integration-
Limiting Algorithm for Forward Euler Method 21-14

Dot Product Block Converted from S-Function to Core
Block . 21-15

Pulse Generator Block Uses New Default Values for Period and
Pulse Width . 21-15

Random Number, Uniform Random Number, and Unit Delay
Blocks Use New Default Values for Sample Time 21-16

Trigonometric Function Block Provides Better Support of
Accelerator Mode . 21-16

Reshape Block Enhanced with New Input Port 21-16
Multidimensional Signals in Simulink Blocks 21-16
Subsystem Blocks Enhanced with Read-Only Property That

Indicates Virtual Status . 21-17

User Interface Enhancements . 21-18

Port Value Displays in Referenced Models 21-18
Print Sample Time Legend . 21-18
M-API for Access to Compiled Sample Time Information . . 21-18
Model Advisor Report Enhancements 21-18
Counterclockwise Block Rotation . 21-18
Physical Port Rotation for Masked Blocks 21-19
Smart Guides . 21-19
Customizing the Library Browser's User Interface 21-19
Subsystem Creation Command . 21-19
Removal of Lookup Table Designer from the Lookup Table

Editor . 21-19

S-Functions . 21-20

Level-1 Fortran S-Functions . 21-20

R2008b

Simulation Performance . 22-2

Parallel Simulations in Rapid Accelerator Mode 22-2
Improved Rebuild Mechanism in Rapid Accelerator Mode . . 22-2
Data Type Size Limit on Accelerated Simulation Removed . 22-2

lvii

New Initialization Behavior in Conditional, Action, and Iterator
Subsystems . 22-2

Component-Based Modeling . 22-4

Processor-in-the-Loop Mode in Model Block 22-4
Conditionally Executed Subsystem Initial Conditions 22-4

Activating This Feature for New Models 22-4
Migrating Existing Models . 22-5

Model Block Input Enhancement . 22-6
One Parameter Controls Accelerator Mode Build Verbosity . 22-6

Embedded MATLAB Function Blocks 22-8

Support for Fixed-Point Word Lengths Up to 128 Bits 22-8
Enhanced Simulation and Code Generation Options for

Embedded MATLAB Function Blocks 22-8
Data Type Override Now Works Consistently on Outputs . . 22-8
Improperly-Scaled Fixed-Point Relational Operators Now

Match MATLAB Results . 22-9

Data Management . 22-10

Support for Enumerated Data Types 22-10
Simulink Bus Editor Enhancements 22-10
New Model Advisor Check for Data Store Memory Usage . 22-10

Simulink File Management . 22-11

Model Dependencies Tools . 22-11

Block Enhancements . 22-12

Trigonometric Function Block . 22-12
Math Function Block . 22-12
Merge Block . 22-12
Discrete-Time Integrator Block . 22-12
Modifying a Link to a Library Block in a Callback Function Can

Cause Illegal Modification Errors 22-12
Random Number Block . 22-13
Signal Generator Block . 22-13
Sum Block . 22-13
Switch Block . 22-13
Uniform Random Number Block . 22-14

lviii Contents

User Interface Enhancements . 22-15

Sample Time . 22-15
Model Advisor . 22-15
“What’s This?” Context-Sensitive Help for Commonly Used

Blocks . 22-15
Compact Icon Option Displays More Blocks in Library

Browser . 22-16
Signal Logging and Test Points Are Controlled

Independently . 22-17
Signal Logging Consistently Retains Duplicate Signal

Regions . 22-17
Simulink Configuration Parameters 22-18
Model Help Menu Update . 22-20
Unified Simulation and Embeddable Code Generation

Options . 22-20
Nonlibrary Models: Changes for the General Pane of the

Simulation Target Dialog Box 22-21
Nonlibrary Models: Changes for the Custom Code Pane of

the Simulation Target Dialog Box 22-23
Nonlibrary Models: Changes for the Description Pane of

the Simulation Target Dialog Box 22-24
Nonlibrary Models: Mapping of GUI Options from the

Simulation Target Dialog Box to the Configuration
Parameters Dialog Box . 22-25

Library Models: Changes for the General Pane of the
Simulation Target Dialog Box 22-27

Library Models: Changes for the Custom Code Pane of the
Simulation Target Dialog Box 22-28

Library Models: Changes for the Description Pane of the
Simulation Target Dialog Box 22-30

Library Models: Mapping of GUI Options from the
Simulation Target Dialog Box to the Configuration
Parameters Dialog Box . 22-30

Nonlibrary Models: Enhancement for the Real-Time
Workshop: Symbols Pane of the Configuration
Parameters Dialog Box . 22-32

Nonlibrary Models: Enhancement for the Real-Time
Workshop: Custom Code Pane of the Configuration
Parameters Dialog Box . 22-33

Library Models: Support for Specifying Custom Code
Options in the Real-Time Workshop Pane of the
Configuration Parameters Dialog Box 22-33

lix

Mapping of Target Object Properties to Parameters in the
Configuration Parameters Dialog Box 22-34

Mapping of Object Properties to Simulation Parameters
for Nonlibrary Models . 22-35

Mapping of Object Properties to Simulation Parameters
for Library Models . 22-36

Mapping of Object Properties to Code Generation
Parameters for Library Models 22-37

New Parameters in the Configuration Parameters Dialog Box
for Simulation and Embeddable Code Generation 22-41

New Simulation Parameters for Nonlibrary Models . . 22-41
New Simulation Parameter for Library Models 22-41
New Code Generation Parameters for Nonlibrary

Models . 22-42
New Code Generation Parameters for Library Models 22-42

S-Functions . 22-44

Ada S-Functions . 22-44
Legacy Code Tool Enhancement . 22-44

MATLAB Changes Affecting Simulink 22-46

Changes to MATLAB Startup Options 22-46
MATLAB Graphics Tools Not Supported Under -nojvm Startup

Option . 22-46

R2008a

Simulation Performance . 23-2

Rapid Accelerator . 23-2
Additional Zero Crossing Algorithm 23-2

Component-Based Modeling . 23-3

Efficient Parent Model Rebuilds . 23-3
Scalar Root Inputs Passed Only by Reference 23-3
Unlimited Referenced Models . 23-3

lx Contents

Embedded MATLAB Function Blocks 23-4

Nontunable Structure Parameters . 23-4
Bidirectional Traceability . 23-4
Specify Scaling Explicitly for Fixed-Point Data 23-4

Data Management . 23-5

Array Format Cannot Be Used to Export Multiple Matrix
Signals . 23-5

Bus Editor Upgraded . 23-5
Changing Nontunable Values Does Not Affect the Current

Simulation . 23-5
Detection of Illegal Rate Transitions 23-6
Explicit Scaling Required for Fixed-Point Data 23-6
Fixed-Point Details Display Available 23-7
More than 2GB of Simulation Data Can be Logged on 64-Bit

Platforms . 23-7
Order of Simulink and MPT Parameter and Signal Fields

Changed . 23-8
Range Checking for Complex Numbers 23-9
Rate Transition Blocks Needed on Virtual Buses 23-9
Sample Times for Virtual Blocks . 23-9
Signals Needing Resolution Are Graphically Indicated . . . 23-10

Simulink File Management . 23-11

Autosave . 23-11
Old Version Notification . 23-11
Model Dependencies Tools . 23-11

Block Enhancements . 23-12

New Discrete FIR Filter Block Replaces Weighted Moving
Average Block . 23-12

Rate Transition Block Enhancements 23-12
Enhanced Lookup Table (n-D) Block 23-13
New Accumulator Parameter on Sum Block 23-13

User Interface Enhancements . 23-14

Simulink Library Browser . 23-14
Simulink Preferences Window . 23-14
Model Advisor . 23-14

lxi

Solver Controls . 23-15
“What’s This?” Context-Sensitive Help Available for Simulink

Configuration Parameters Dialog 23-16
S-Functions . 23-16

Simplified Level-2 M-File S-Function Template 23-16

R2007b

Simulation Performance . 24-2

Simulink Accelerator . 24-2
Simulink Profiler . 24-2
Compiler Optimization Level . 24-2
Variable-Step Discrete Solver . 24-3
Referenced Models Can Execute in Normal or Accelerator

Mode . 24-3
Accelerator and Model Reference Targets Now Use Standard

Internal Functions . 24-3

Component-Based Modeling . 24-4

New Instance View Option for the Model Dependency
Viewer . 24-4

Mask Editor Now Requires Java . 24-4

Embedded MATLAB Function Blocks 24-5

Complex and Fixed-Point Parameters 24-5
Support for Algorithms That Span Multiple M-Files 24-5
Loading R2007b Embedded MATLAB Function Blocks in

Earlier Versions of Simulink Software 24-5

Data Management . 24-6

New Diagnostic for Continuous Sample Time on Non-Floating-
Point Signals . 24-6

New Standardized User Interface for Specifying Data
Types . 24-6

New Block Parameters for Specifying Minimum and Maximum
Values . 24-7

lxii Contents

New Range Checking of Block Parameters 24-8
New Diagnostic for Checking Signal Ranges During

Simulation . 24-9

Configuration Management . 24-10

Disabled Library Link Management 24-10
Model Dependencies Tools . 24-10

Embedded Software Design . 24-11

Legacy Code Tool Enhancement . 24-11

Block Enhancements . 24-12

Product Block Reorders Inputs Internally 24-12
Block Data Tips Now Work on All Platforms 24-12
Enhanced Data Type Support for Blocks 24-12
New Simulink Data Class Block Object Properties 24-13
New Break Link Options for save_system Command 24-13
Simulink Software Checks Data Type of the Initial Condition

Signal of the Integrator Block . 24-13

Usability Enhancements . 24-14

Model Advisor . 24-14
Alignment Commands . 24-14

S-Functions . 24-15

New S-Function APIs to Support Singleton Dimension
Handling . 24-15

New Level-2 M-File S-Function Example 24-15

R2007a+

Bug Fixes

lxiii

R2007a

Multidimensional Signals . 26-2
Multidimensional Signals in Simulink Blocks 26-2
Multidimensional Signals in S-Functions 26-4
Multidimensional Signals in Level-2 M-File S-Functions . . . 26-4

New Block Parameters . 26-5

GNU Compiler Upgrade . 26-5

Changes to Concatenate Block . 26-5

Changes to Assignment Block . 26-6

Changes to Selector Block . 26-6

Improved Model Advisor Navigation and Display 26-7

Change to Simulink.ModelAdvisor.getModelAdvisor
Method . 26-8

New Simulink Blocks . 26-9

Change to Level-2 MATLAB S-Function Block 26-9

Model Dependency Analysis . 26-9

Model File Monitoring . 26-9

Legacy Code Tool Enhancements . 26-9

Continuous State Names . 26-11

Changes to Embedded MATLAB Function Block 26-11
New Function Checks M-Code for Compliance with Embedded

MATLAB Subset . 26-11
Support for Multidimensional Arrays 26-12
Support for Function Handles . 26-12
Enhanced Support for Frames . 26-12
New Embedded MATLAB Runtime Library Functions . . . 26-12

lxiv Contents

Using & and | Operators in Embedded MATLAB Function
Blocks . 26-14

Calling get Function from Embedded MATLAB Function
Blocks . 26-15

Documentation on Embedded MATLAB Subset has Moved 26-15

Referenced Models Support Non-Zero Start Time 26-15

New Functions Copy a Model to a Subsystem or Subsystem to
Model . 26-15

New Functions Empty a Model or Subsystem 26-16

Default for Signal Resolution Parameter Has Changed . . 26-17

Referencing Configuration Sets . 26-18

New Block, Model Advisor Check, and Utility Function for
Bus to Vector Conversion . 26-18

Enhanced Support for Tunable Parameters in
Expressions . 26-19

New Loss of Tunability Diagnostic 26-19

Port Parameter Evaluation Has Changed 26-20

Data Type Objects Can Be Passed Via Mask Parameters . 26-20

Expanded Options for Displaying Subsystem Port Labels 26-21

Model Explorer Customization Option Displays Properties of
Selected Object . 26-21

Change to PaperPositionMode Parameter 26-21

New Simulink.Bus.objectToCell Function 26-22

Simulink.Bus.save Function Enhanced To Allow Suppression
of Bus Object Creation . 26-22

Change in Version 6.5 (R2006b) Introduced
Incompatibility . 26-22

lxv

Nonverbose Output During Code Generation 26-22

SimulationMode Removed From Configuration Set 26-22

R2006b

Model Dependency Viewer . 27-2

Enhanced Lookup Table Blocks . 27-2

Legacy Code Tool . 27-2

Simulink Software Now Uses Internal MATLAB Functions for
Math Operations . 27-2

Enhanced Integer Support in Math Function Block 27-3

Configuration Set Updates . 27-3

Command to Initiate Data Logging During Simulation . . . 27-4

Commands for Obtaining Model and Subsystem
Checksums . 27-4

Sample Hit Time Adjusting Diagnostic 27-4

Function-Call Models Can Now Run Without Being
Referenced . 27-4

Signal Builder Supports Printing of Signal Groups 27-5

Method for Comparing Simulink Data Objects 27-5

Unified Font Preferences Dialog Box 27-5

Limitation on Number of Referenced Models Eliminated for
Single References . 27-5

lxvi Contents

Parameter Objects Can Now Be Used to Specify Model
Configuration Parameters . 27-5

Parameter Pooling Is Now Always Enabled 27-6

Attempting to Reference a Symbol in an Uninitialized Mask
Workspace Generates an Error . 27-6

Changes to Integrator Block's Level Reset Options 27-7

Embedded MATLAB Function Block Features and
Changes . 27-7

Support for Structures . 27-7
Embedded MATLAB Editor Analyzes Code with M-Lint . . . 27-8
New Embedded MATLAB Runtime Library Functions 27-8
New Requirement for Calling MATLAB Functions from

Embedded MATLAB Function Blocks 27-10
Type and Size Mismatch of Values Returned from MATLAB

Functions Generates Error . 27-11
Embedded MATLAB Function Blocks Cannot Output Character

Data . 27-11

R2006a+

No New Features or Changes

R2006a

Signal Object Initialization . 29-2

Icon Shape Property for Logical Operator Block 29-2

Data Type Property of Parameter Objects Now Settable . . 29-2

Range-Checking for Parameter and Signal Object Values . 29-2

lxvii

Expanded Menu Customization . 29-3

Bringing the MATLAB Desktop Forward 29-3

Converting Atomic Subsystems to Model References 29-3

Concatenate Block . 29-3

Model Advisor Changes . 29-4
Model Advisor Tasks Introduced . 29-4
Model Advisor API . 29-4

Built-in Block's Initial Appearance Reflects Parameter
Settings . 29-4

Double-Click Model Block to Open Referenced Model 29-4

Signal Logs Reflect Bus Hierarchy . 29-5

Tiled Printing . 29-5

Solver Diagnostic Controls . 29-5

Diagnostic Added for Multitasking Conditionally Executed
Subsystems . 29-5

Embedded MATLAB Function Block Features and
Changes . 29-6

Option to Disable Saturation on Integer Overflow 29-6
Nontunable Option Allows Use of Parameters in Constant

Expressions . 29-6
Enhanced Support for Fixed-Point Arithmetic 29-6
Support for Integer Division . 29-6
New Embedded MATLAB Runtime Library Functions 29-7
Setting FIMATH Cast Before Sum to False No Longer

Supported in Embedded MATLAB Function Blocks 29-9
Type Mismatch of Scalar Output Data in Embedded MATLAB

Function Blocks Generates Error 29-10
Implicit Parameter Type Conversions No Longer Supported in

Embedded MATLAB Function Blocks 29-10
Fixed-Point Parameters Not Supported 29-11
Embedded MATLAB Function Blocks Require C Compiler for

Windows 64 . 29-11

lxviii Contents

R14SP3

Model Referencing . 30-2

Function-Call Models . 30-2
Using Noninlined S-Functions in Referenced Models 30-2
Referenced Models Without Root I/O Can Inherit Sample

Times . 30-2
Referenced Models Can Use Variable Step Solvers 30-2
Model Dependency Graphs Accessible from the Tools Menu . 30-2
Command That Converts Atomic Subsystems to Model

References . 30-3
Model Reference Demos . 30-3

Block Enhancements . 30-4

Variable Transport Delay, Variable Time Delay Blocks 30-4
Additional Reset Trigger for Discrete-Time Integrator

Block . 30-4
Input Port Latching Enhancements 30-4

Label Clarified for Triggered Subsystem Latch Option . 30-4
Latch Option Added for Function-Call Subsystems . . . 30-5

Improved Function-Call Inputs Warning Label 30-5
Parameter Object Expressions No Longer Supported in Dialog

Boxes . 30-5

Modeling Enhancements . 30-6

Annotations . 30-6
Custom Signal Viewers and Generators 30-6
Model Explorer Search Option . 30-6
Using Signal Objects to Assign Signal Properties 30-6
Bus Utility Functions . 30-6
Fixed-Point Support in Embedded MATLAB Function

Blocks . 30-7
Embedded MATLAB Function Editor 30-7
Input Trigger and Function-Call Output Support in Embedded

MATLAB Function Blocks . 30-7
Find Options Added to the Data Object Wizard 30-7
Fixed-Point Functions No Longer Supported for Use in Signal

Objects . 30-8

lxix

Simulation Enhancements . 30-9

Viewing Logged Signal Data . 30-9
Importing Time-Series Data . 30-9
Using a Variable-Step Solver with Rate Transition Blocks . . 30-9
Additional Diagnostics . 30-9
Data Integrity Diagnostics Pane Renamed, Reorganized . . 30-10
Improved Sample-Time Independence Error Messages . . . 30-10

User Interface Enhancements . 30-11

Model Viewing . 30-11
Customizing the Simulink User Interface 30-11

MEX-Files . 30-12

MEX-Files on Windows Systems . 30-12
MEX-File Extension Changed . 30-12

R14SP2

Multiple Signals on Single Set of Axes 31-2

Logging Signals to the MATLAB Workspace 31-2

Legends that Identify Signal Traces 31-2

Displaying Tic Labels . 31-2

Opening Parameters Dialog Box . 31-2

Rootlevel Input Ports . 31-2

lxx Contents

R2017a
Version: 8.9

New Features

Bug Fixes

Compatibility Considerations

R2017a

Simulation Analysis and Performance

Parallel Simulations: Directly run multiple parallel simulations from the
parsim command

Using this feature, you can iteratively change various parameter values in your model,
starting from a baseline setting, and perform a series of simulations with these values.
You can provide these changes to your model through a SimulationInput object and
run multiple simulations with them. Some common use cases for this approach include
model testing, design of experiments, Monte Carlo runs, and sensitivity and robustness
analysis.

In addition, with a Parallel Computing Toolbox™ license, you can use the parsim
command to run multiple simulations in parallel. With the parsim command, the
amount of custom code you need to run multiple simulations in parallel is significantly
reduced compared to using the sim command within a parfor loop.

When you use a SimulationInput object to run multiple simulations, the simulations
use the values in the SimulationInput object rather than the values defined in your
model. This enables you to run multiple simulations without needing to modify your
model between each simulation. The SimulationInput object allows you to change the
following settings in your model:

• Initial State
• External Inputs
• Model Parameters
• Block Parameters
• Variables

For more information, see “Run Multiple Simulations”.

Simulink Cache: Get simulation results faster by using shared model
artifacts

In R2017a, performing an update diagram or running a simulation on a new model that
builds a model reference SIM target or rapid accelerator target creates a Simulink® cache

1-2

 Simulation Analysis and Performance

file (an .slxc file). Use Simulink cache files to share referenced model build artifacts
without repeating the cost of a first-time build. Some examples of situations when the
cache files can speed up simulation include:

• First-time builds for later use of a referenced model by yourself or others
• Parallel simulations

For details, see “Reuse Simulation Builds for Faster Simulations”.

Inport File Streaming: Stream large input signals from MAT-files without
loading the data into memory

To log, load, and analyze large amounts of simulation data that cannot be stored in
memory, you can use Simulink data streaming and MATLAB® big data features. R2017a
includes features that help you to:

• Use big data in Simulink logging and loading.
• Use in-memory timetable format data within

Simulink.SimulationData.Dataset objects, in combination with other kinds of
data, such as timeseries.

• Use MATLAB big data analysis features.

For details, see “Working with Big Data for Simulations”.

Log and Load Big Data

You can use a matlab.io.datastore.SimulationDatastore object in a
Simulink.SimulationData.Dataset object to stream data into a root Inport block.
Create a SimulationDatastore object for an individual signal that is stored in a in-file
Dataset object referenced by a Simulink.SimulationData.DatasetRef object.

To obtain a SimulationDatastore object from a DatasetRef object, you can use
curly braces indexing syntax with a DatasetRef object (for example, simDatastore =
dsr{3} returns the third DatasetRef element as a SimulationDatastore object.

To load logged signal data using root Inport blocks, you can use the new
createInputDataset function to create a Dataset object that contains elements that
correspond to root-level Inport blocks in the model.

1-3

R2017a

Use timetable Data in Dataset Objects

You can use the new DatasetSignalFormat configuration parameter to specify whether
you want data logged in Dataset format to be saved in timeseries (default) or in-
memory timetable format within the Dataset object.

When you read data from a SimulationDatastore object, the data is returned as a
timetable object.

Analyze in MATLAB Big Data Created by Simulink

You can use a SimulationDatastore object to output a MATLAB tall timetable
object to analyze big data from a simulation.

Unified Streaming and Logging: Mark a signal once to stream it to the
Simulation Data Inspector and log it to the MATLAB workspace

In R2017a, when you log signals, the data is logged to the workspace and streamed to the
Simulation Data Inspector.

1 In the Simulink Editor, select one or more signals.
2

Click the Simulation Data Inspector button arrow and click Log Selected
Signals.

3 Use the Data Import/Export > Signal logging configuration parameter to control
whether signal data is exported to the MATLAB workspace at the end of simulation.
If you clear this parameter, signals are streamed to the Simulation Data Inspector
but not exported to the workspace.

Note: You can use normal, accelerator, rapid accelerator, SIL, and PIL simulation modes
when you log and stream to the Simulation Data Inspector.

You use signal logging with these products:

• Stateflow® — Elements in a chart that can be logged are not streamed, but are logged
to the workspace.

• Simulink Real-Time™

1-4

 Simulation Analysis and Performance

Simulation Data Inspector: Run simulation comparisons with a new UI,
time tolerance support, and faster performance

The Simulation Data Inspector has a new, streamlined interface. Examples of the
changes include:

• Inspection and formatting options are integrated into the Inspect and Compare
views, instead of being on a toolbar.

• You can specify display options for axes lines and plots, such as color.
• You can format, group, and sort the signal data.
• The Compare view displays status information how many signals are within the

tolerance range.

When you compare simulation runs and signals, you can set now set time tolerances. The
plot for each signal displays a band representing the tolerance range.

In R2017a, to save Simulation Data Inspector session data and setup is faster than
in previous releases, you can specify the .mldatx file extension instead of the .mat
extension. A status overlay displays information about the save operation. For .mldatx
files, you can specify preferences to compress the file and to limit the amount of
data stored. When you open a .mldatx file with MATLAB closed, MATLAB and the
Simulation Data Inspector open.

Dashboard Block Connection Indicators: Easily determine which block in
your model is associated with a given Dashboard block

Dashboard block connection indicators provide visual indications of the connections
between Dashboard blocks and signals and components in your model. You can click on a
Dashboard block to highlight the connected block or signal and vice versa.

1-5

R2017a

Dashboard block binding indicators also allow you to jump to the connected element
through subsystem hierarchies to locate the connection in the model.

Signal Tracing: Incrementally trace and highlight paths for debugging

Use the Highlight Signal to Destination option from the context menu for the signal
to highlight the actual destination for a signal. For example, selecting this option for a
bus highlights only the signals actually selected from the bus. For more information, see
“Display Signal Sources and Destinations”.

1-6

 Simulation Analysis and Performance

Root-Level Inport Blocks: Create dataset for root-level Inport blocks

To generate a Simulink.SimulationData.Dataset object from the root-level Inport
blocks in a model, you can use the createInputDataset function. Signals in the
generated dataset have the properties of the Inport blocks and the corresponding ground
values at model start and stop times. You can create timeseries objects for the time
and values for signals for which you want to load data for simulation. The other signals
use ground values.

Simulation Logging Data and Metadata: Access simulation data and
information more directly

You can use these new capabilities to access simulation outputs in SimulationOutput
objects and data in Dataset format more easily.

• Access logged simulation data (for example, tout, xout, and yout) as properties of
the out element of a Simulink.SimulationOutput object. For example, you can access
output data that uses the default variable named yout:

simOut = sim('vdp','SaveOutput','on')

myOutput = simOut.simOut.yout

• Use the Variable Editor to access logged data.

• Each element in a Simulink.SimulationData.Dataset is a separate row.
• Display Dataset objects to view information about elements, such as the block

path and type of data the element contains.
• Use the openvar function to view a logged data variable in the Variable Editor.
• Use curly braces to streamline indexing syntax to access elements in a Dataset

object, instead of using get, getElement, setElement, or addElement methods.
For example, to return the second element of a Dataset:

xout{2}

You can use these new capabilities to access simulation logging error messages and
metadata on a SimulationOutput object.

• View error message and information about the stack and causes for simulation data
by using the SimulationOutput object ErrorMessage property.

• Display the error message in the Variable Editor, by double-clicking the
ErrorMessage row.

1-7

R2017a

• Access an exception by using:

Simulink.SimulationMetadata.ExecutionInfo.ErrorDiagnostics.Diagnostic()

• View simulation metadata by using the SimulationMetadata property of the
SimulationOutput object.

• Use tab completion to access SimulationMetadata object properties such as
ModelInfo and to access field names.

• Display simulation metadata in the Variable Editor using one of these approaches:

• Select the Show Simulation Metadata check box (which displays the data in a
tree structure).

• Double-click the SimulationMetadata row.
• View the SimulationOutput object.

For parallel simulations, for which you specify an array of input objects, if you are
logging to file, Simulink

• Creates Simulink.SimulationData.DatasetRef objects to access output data in the
MAT-file and includes those objects in the SimulationOutput object data

• Enables the CaptureErrors argument for simulation.

Rapid Accelerator mode: Rapid Accelerator now supports S-functions
without source code

Rapid Accelerator mode can now use C S-functions without storing the S-function source
code. You do not need to collocate the S-function source code with the S-function binaries.
This option enables easier sharing of models.

Signal Editor: Create and edit input signals that can be organized for
multiple simulations

Use the Signal Editor to create and edit input signals that you can organize for multiple
simulations. For more information, see “Create and Edit Signal Data”.

Improved simulation performance when stepping back is enabled

The performance of stepping back using the Simulation Stepper has been improved. For
more information on the Simulation Stepper, see Simulation Stepping.

1-8

 Simulation Analysis and Performance

Simulink Diagnostic Management: Control which simulation and fixed-
point diagnostic warnings you receive from specific blocks, including
model reference

Select blocks with certain diagnostic suppressions by default

Beginning in R2017a, the Counter Free-Running, HDL Counter, Counter Limited, and
Extract Bits blocks no longer report wrap on overflow warnings. The blocks continue
to report errors due to wrap on overflows. You can restore the warning diagnostic by
breaking the library link and using the Simulink.restoreDiagnostic function.

Diagnostic suppressor functions support MSLDiagnostic as input argument

You can now suppress and restore certain diagnostic warnings thrown by
your model using a Simulink.MSLDiagnostic object as an input to the
Simulink.suppressDiagnostic and Simulink.restoreDiagnostic functions.

To use simulation metadata and MSLDiagnostic objects, use set_param to set
ReturnWorkspaceOutputs to on. Store the simulation output in a variable.

set_param(model_name,'ReturnWorkspaceOutputs','on');

out = sim(model_name);

Access the MSLDiagnostic object through the simulation output.

diag = out.getSimulationMetadata.ExecutionInfo.WarningDiagnostics(1).Diagnostic

diag =

 MSLDiagnostic with properties:

 identifier: 'SimulinkFixedPoint:util:fxpParameterPrecisionLoss'

 message: 'Parameter precision loss occurred for 'Value' of

 'Suppressor_CLI_Demo/one'. The parameter's value cannot be

 represented exactly using the run-time data type. A small

 quantization error has occurred. To disable this warning or error,

 in the Configuration Parameters > Diagnostics > Data Validity pane,

 set the 'Detect precision loss' option in the Parameters group to 'none'.'

 paths: {'Suppressor_CLI_Demo/one'}

 cause: {}

 stack: [0×1 struct]

Use the Simulink.suppressDiagnostic function to suppress the diagnostic warning
specified by the MSLDiagnostic object, diag.

1-9

R2017a

Simulink.suppressDiagnostic(diag)

You can restore the diagnostic using the Simulink.restoreDiagnostic function

Simulink.restoreDiagnostic(diag)

Improved workflow for suppressing diagnostics from referenced models

You can now suppress certain diagnostic warnings for specified instances of warnings
in a referenced model. By accessing the MSLDiagnostic object of the specific instance
of the warning, you can suppress the warning only when the block inside the referenced
model is simulated from the specified top model.

Absolute tolerance for continuous variable step solver tied to the relative tolerance

The behavior of the auto absolute tolerance for continuous variable step solvers has
changed. Previously, setting the absolute tolerance to auto specified the initial value as
1e-6, which was adjusted by the solver during simulation. Now, the absolute tolerance is
tied to the relative tolerance. The value is initially set to the minimum of 1e-6 and 1e-3
times the relative tolerance and adjusted by the solver during simulation. This change
enhances the overall solver robustness and improves simulation accuracy. For models
with auto absolute tolerance developed before R2017a, simulation performance may be
improved by increasing maximum step size and loosening relative tolerance.

1-10

 Simulink Editor

Simulink Editor

Automatic Port Creation: Add inports and outports to blocks when
routing signals

For some blocks in Simulink models, dragging a line to connect another block to it adds
a port. For example, dragging a line from a block to a subsystem adds a port to the
subsystem and the inport or output block inside the subsystem. For an example, see
“Build and Edit a Model in the Simulink Editor”.

These blocks add ports when you connect a signal to them:

• Subsystem blocks except masked blocks and the Configurable Subsystem block
• Stateflow charts, truth tables, and state transition tables
• Bus Creator, Bus Selector, Mux, Demux, and Merge blocks
• Vector Concatenate and Matrix Concatenate blocks
• Add, Sum, Subtract, Sum of Elements, Product, and Product of Elements blocks
• Scope blocks
• Logical Operator blocks
• MATLAB Function block

Model Block Masking: Customize the parameter dialog boxes for
referenced models

You can now apply a mask on a Simulink model and create a customized parameter
dialog box for the referenced model. For more information, see “Create and Reference a
Masked Model”.

Quick Find: Use a modifier to search for model properties in search box

In R2017a, you can search for property values in a model using a modifier in the search
box. Enter the property and value you want to search for, in the form Property:Value.
For more information on using modifiers in the Find box, see “Search for Model
Elements Using Find”.

1-11

R2017a

Format Painter: Copy formatting between model elements

Using the ellipsis menu on a block, area, or signal line in a model, you can copy the
formatting from one model element to another. The Copy Formatting brush appears
on the menu when the model element you select has formatting applied. Examples
of formatting include a font change or foreground or background color. For more
information, see “Adjust Visual Presentation to Improve Model Readability”.

Refresh Library Browser: Update quick insert list with custom libraries
using menu command

In R2017a, you can update the contents of the quick insert list to use your current
configuration of custom libraries by using the Refresh Library Browser command. Use
the quick insert interface to add blocks to your model without leaving the canvas. To use
quick insert, click where you want to add a block and start typing the name of the block.

To ensure that the quick insert interface includes the blocks from your custom libraries
currently in effect, use the Library Browser Refresh Library Browser command. In
the Library Browser, right-click anywhere in the library list and select Refresh Library
Browser.

Functionality Being Removed or Changed

Two functions in the Simulink.BlockDiagram class have been renamed.

Functionality

These functions were renamed:

• Simulink.BlockDiagram.copyContentsToSubSystem

• Simulink.BlockDiagram.createSubSystem

Result

The renamed functions still run.

Use Instead

The functions were renamed to:

• Simulink.BlockDiagram.copyContentsToSubsystem

1-12

 Simulink Editor

• Simulink.BlockDiagram.createSubsystem

Compatibility Consideration

For each function, you can use the earlier or newer syntax.

Compatibility Considerations

Scripts that use the earlier syntax will continue to work. Use the new syntax going
forward to match the spelling of other functions in this class.

Optimize rendering during mask icon drawing

When the mask drawing commands in the Mask Editor do not have dependency on the
mask workspace, you can specify the value of the Run initialization option as Off.

Setting the value to Off helps to optimize Simulink performance during mask icon
rendering because the mask initialization commands are not executed. For more
information, see “Rules for Initialization commands”.

1-13

R2017a

Component-Based Modeling

Reduced Bus Wiring: Quickly group signals as buses and automatically
create bus element ports for fewer signal lines between and within
subsystems

The Ports & Subsystems library contains new In Bus Element and Out Bus Element
blocks. These bus element port blocks provide a simplified and flexible way to use bus
signals as inputs and outputs to subsystems.

The In Bus Element block is equivalent to an Inport block combined with a Bus Selector
block. The Out Bus Element block is equivalent to an Outport block combined with a
Bus Creator block. These new blocks are of block type Inport and Outport, respectively.
There are no specifications allowed on bus element port blocks, which support inherited
workflows. You cannot use the Block Parameters dialog box of a bus element port block
to specify bus element attributes, such as data type or dimensions.

To work with buses at subsystem interfaces, consider using In Bus Element and
OutBusElement blocks. This bus element port block combination:

• Reduces signal line complexity and clutter in a block diagram.
• Makes it easy to change the interface incrementally.
• Allows access to a bus element closer to the point of usage.

• For input, avoid a duplicate Inport blocks and a Bus Selector, Goto, and From
block configuration.

• For output, avoid a Goto, From, and Bus Creator block configuration.

This model uses Inport, Bus Selector, Bus Creator, and Outport blocks.

1-14

 Component-Based Modeling

Here is an equivalent model using bus element port blocks.

You can refactor a subsystem interface that has Inport, Bus Selector, Bus Creator, and
Outport blocks to use In Bus Element and Out Bus Element blocks. Conversions are
supported only when the signal lines or blocks do not have any extra specifications. You
can use single-click operations to convert:

• Inport and Bus Selector blocks in a subsystem to In Bus Element blocks.
• Outport and Bus Creator blocks in a subsystem to Out Bus Element blocks.

To transform input or output interfaces of subsystems to use bus element port block, you
can use marquee selection options.

1-15

R2017a

For more information, see “Simplify Subsystem Bus Interfaces”.

Bus and Vector Mixtures Not Supported

A mixtures of bus and vector (mux) signals occurs when some blocks treat a signal as a
vector, while other blocks treat that same signal as a bus. Mixing bus and vector signals
in a model causes your model to be less robust. Configuring your model to prevent bus
and vector mixtures:

• Improves loop handling
• Produces clear error messages
• Contributes to consistent edit and compile-time behavior

To check a model for bus signals that are used as vectors, use the new Model Advisor
“Check bus signals treated as vectors” check.

Compatibility Considerations

In R2017a, the Demux block parameter Bus selection mode (BusSelectionMode) is
no longer supported.

In R2017a, these checks and diagnostics are no longer available:

• In the Model Advisor, the Check bus usage check
• In the Upgrade Advisor, the Check Mux blocks that create bus signals check
• The Configuration Parameters > Diagnostics > Connectivity > Mux blocks

used to create bus signals parameter

For R2017a, to handle a legacy model that contains vector and bus mixtures:

1 In R2016b, run the Upgrade Advisor with the Check Mux blocks that create bus
signals check enabled.

2 In R2017a, open the upgraded model.

You can continue to use existing slreplace_mux function to replace with Bus Creator
blocks any Mux blocks are used to create buses. However, in a future release, the
slreplace_mux function could be removed.

1-16

 Component-Based Modeling

Inline Variants: Single-Input/Single-Output Inline Variant blocks support
zero active variant control

A variant model with Single-Input/Single-Output Inline Variant block can now be
simulated without an active variant choice. You can use the Allow zero active variant
controls option to specify the choice.

For more information on Inline Variants, see “Define, Configure, and Activate Variants”.

Searchable, sortable tables for parameterizing reusable models with
model arguments

Before R2017a, you used comma-separated lists to identify model arguments and specify
argument values for reusable referenced models.

In R2017a:

• To identify variables in a model workspace as model arguments, in the Model
Explorer Contents pane, use the Argument check box instead of a comma-separated
list.

• To specify argument values in a Model block, use a searchable, sortable table instead
of a comma-separated list.

Now, when you set the programmatic parameter of the Model block,
ParameterArgumentValues, you can use a structure instead of a comma-separated list.
See “Parameterize Instances of a Reusable Referenced Model”.

Compatibility Considerations

If you use the Argument check box in the Model Explorer, you must modify scripts that
manipulate the ParameterArgumentValues parameter of referencing Model blocks.
Make the scripts set ParameterArgumentValues by using structures instead of comma-
separated lists. If you do not modify the scripts, they generate errors while trying to use
comma-separated lists.

1-17

R2017a

Project and File Management

Simulink Project Upgrade: Easily update all the models in your Simulink
Project to the latest release

Easily upgrade all the models in your project using the Upgrade Project tool in Simulink
Project, by selecting Run Checks > Upgrade. You can upgrade all models in your
project to the latest release using a simple workflow. The tool can apply all fixes
automatically when possible, upgrade all model hierarchies in the project at once, and
produce a report. You do not need to open the Upgrade Advisor.

For details, see “Upgrade All Project Models”.

Missing Product Identification: Fix models with unresolved library links
and unknown block types by finding and installing missing products

Simulink now tries to help you find and install missing products that a model needs
to run. If you open a model that contains built-in blocks or library links from missing
products, you see labels and links to help you fix the problem.

• Blocks are labeled with missing products (for example, SimEvents not installed)
• Tooltips include the name of the missing product
• Messages provide links to open Add-On Explorer and install the missing products
• Simulink Project dependency analysis reports missing products required by a project.

To find a link to open Add-On Explorer and install the product:

• For built-in blocks, open the Diagnostic Viewer, and click the link in the warning.
• For unresolved library links, double-click the block to view details and click the link.

1-18

 Project and File Management

For details, see the Unresolved Link block reference page, and “Check Dependency
Results and Resolve Problems”.

Git Pull: Fetch and merge in one step

You can now use Pull for Git™ from the Simulink Project toolstrip tab. Pull fetches the
latest changes and merges them into your current branch. Previously, you had to fetch
and merge separately before you could see changes.

For details, see “Pull, Push, and Fetch Files with Git”.

Project Creation API: Set up projects programmatically, including
shortcuts and referenced projects

New functions enable you to create Simulink projects programmatically. You can set up
referenced projects, shortcuts, and the path. Previously you had to use Simulink Project
to set up projects interactively. New functions:

• slproject.create

• addPath

• removePath

1-19

R2017a

• addReference

• removeReference

• addShortcut

• removeShortcut

For an example, see “Creating Simulink Projects Programmatically”.

Referenced Project Change Management: Compare components with
checkpoints

You can create a checkpoint for a referenced project. You can then compare the
referenced project against the checkpoint to detect any changes.

For details, see “Manage Referenced Project Changes Using Checkpoints”.

Source Control Toolstrip: Simplified workflow for working with source
control

You can now use the Simulink Project toolstrip tab to perform source control action.
Built-in SVN or Git and other source control integrations now have toolstrip buttons for
operations such as Commit, Update, Push, Pull, and other actions.

For details, see “Source Control in Simulink Project”.

Custom Task Tool: Improved interface for managing custom tasks and
creating reports from results

You can run custom tasks on files in Simulink Project with a simplified workflow. The
new custom task tool makes it easier to select files, run tasks, and create and save
reports. Previously you had to select the Batch Job node in the project tree to run custom
tasks.

For details, see “Create a Custom Task Function”.

Git Remote Repositories: Connect existing project to a remote repository

In an existing Simulink project under local Git source control, you can now specify
a remote repository for the project by clicking Remote on the Simulink Project tab.
Previously you could only specify a remote Git repository when you created the project.

1-20

 Project and File Management

For details, see “Add a Project to Git Source Control”.

Start Page Example Search: Find featured examples

You can now search for examples in the Simulink start page examples tab. Enter search
terms to find examples titles and descriptions of interest, or open further examples on
the web.

For details, see “Create a Model”.

Model Templates: Simplified workflow for exporting models to templates

Exporting models to templates is simplified and you can add thumbnail images for your
templates. The dialog box now prepopulates fields with model information that you can
edit if needed.

For details, see “Create a Template from a Model”.

Start Page Favorites: Easily get back to your favorite models and projects

In the Simulink start page recent files list, you can add files to favorites. The Favorites
list then appears above recent files in the start page, so that you can easily reopen your
favorite models and projects.

1-21

R2017a

For details, see “Open a Model”.

Project Componentization: Include referenced projects in templates for
sharing components

When you make a template from a project, you can now include referenced projects
so that template users can get all the components. You can choose whether to share
references together with main project.

For details, see “Create a Template from the Current Project”.

bdIsDirty Function: Programmatically check whether models contain
unsaved changes

You can use the new bdIsDirty function to check whether or not loaded block diagrams
contain unsaved changes.

For details, see bdIsDirty.

1-22

 Project and File Management

listRequiredFiles Function: Get project file dependencies
programmatically

You can use the new listRequiredFiles function to get the downstream dependencies
of a file in a Simulink Project. The function returns the files that the specified file
requires to run.

For details, see listRequiredFiles.

1-23

R2017a

Data Management

Simulation Data: Easily access simulation output data in the MATLAB
Variable Editor and MATLAB Command Window

You can use the Variable Editor to inspect simulation data that is stored as
Simulink.SimulationData.Dataset or Simulink.SimulationOutput objects.
Also, for SimulationOutput objects, you can view simulation metadata that provides
context about the simulation, such as information about the model. For details about the
Variable Editor, see “Editing Workspace Variables”.

In the MATLAB Command Window

, you can use dot notation to access an element of a SimulationOutput object. For
example, to return the xout element of a SimulationOutput object called simout, you
can enter:

xout = simout.yout;

Before R2017a, you had to use a get function (which continues to work in R2017a):

xout = simout.get('yout');

Management of workspace variables and mask parameters from block
parameters

Before R2017a, you could create or navigate to a workspace variable by right-clicking the
value of a block parameter, for example, the Gain parameter of a Gain block.

In R2017a, right-clicking a parameter value does not initiate creation or navigation.

Instead, you left-click the new button next to the value of the block parameter. The
button appears in block dialog boxes, the Property Inspector, the Model Data Editor,
and the Model Explorer. For more information, see “Manage Variables from Block
Parameters”.

• In the Model Data Editor, on the Parameters tab, the Defined In column no longer
appears. To navigate to a workspace variable from a block parameter that appears on
the Parameters tab, use the new button.

1-24

 Data Management

• In the Model Explorer, when you edit the value of a workspace variable or parameter
object, the Open Variable Editor button no longer appears. To open the Variable
Editor, use the new button.

Association of root-level Outport block with Simulink.Signal object

Before R2017a, you could not associate a root-level Outport block with a
Simulink.Signal object.

In R2017a, you can use the Model Data Editor (see “Configure Data Properties by Using
a Table”) to make this association.

Initial State: Log and load initial states using Dataset format

If you set the SaveFormat model parameter to 'Dataset', the
Simulink.BlockDiagram.getInitialState function returns the initial state as a
Simulink.SimulationData.Dataset object.

To load an initial state, you can specify a Dataset object for the Data Import/Export >
Initial state configuration parameter.

Root Inport Mapper Tool Updates

The tool has the following updates:

• Root Inport Mapping has been renamed to Root Inport Mapper.
• To use strong data typing when mapping data from spreadsheets, select Options

> Use Strong Data Typing with Spreadsheets. For more information, see “Set
Options for Mapping”.

Legacy Code Tool StartFcnSpec and
InitializeConditionsFcnSpec accept outputs as arguments

Previously, when you specified the StartFcnSpec and
InitializeConditionsFcnSpec functions of the Legacy Code Tool data structure,
the functions could not accept outputs as arguments. In R2017a, these functions
can access output ports if the S-Function option outputsConditionallyWritten
is set to true. With this option setting, the generated S-Function specifies that

1-25

R2017a

the memory associated with each output port cannot be overwritten and is global
(SS_NOT_REUSABLE_AND_GLOBAL).

Utility to generate Simulink representations of custom data types defined
by external C code

Before R2017a, to integrate your external C code into Simulink by using an S-function,
you needed to manually create:

• Simulink.Bus objects to represent the structure types (struct) that your code
defined. For example, you could use the Bus Editor.

• Enumeration definitions to represent the enumerated types (enum) that your code
defined. For example, you could use the function Simulink.defineIntEnumType.

• Simulink.AliasType objects to represent primitive typedef statements in your
code.

These manual techniques led to data entry errors. Also, maintaining the objects and
definitions in Simulink was difficult.

In R2017a, you can use a function, Simulink.importExternalCTypes, that parses
your external header files for struct, enum, and typedef type definitions and generates
corresponding objects and enumeration classes.

Direct representation of fixed-point data types by
Simulink.AliasType

A fixed-point data type consists of a word length and a scaling (for example, a 16-bit word
length with a 14-bit binary fraction length).

Before R2017a, to specify a custom name for a fixed-point data type, you used one of
these techniques that involve Simulink.NumericType objects:

• Use both Simulink.NumericType and Simulink.AliasType objects.

1 Create a Simulink.NumericType object in the base workspace or a data
dictionary.

2 Configure the Simulink.NumericType object to represent the fixed-point data
type.

3 Create a Simulink.AliasType object.

1-26

 Data Management

4 Configure the Simulink.AliasType object to use the Simulink.NumericType
object as a base data type.

• Use a standalone Simulink.NumericType object.

1 Create a Simulink.NumericType object in the base workspace or a data
dictionary.

2 Configure the Simulink.NumericType object to represent the fixed-point data
type.

3 Set the IsAlias property of the object to true.

In R2017a, a Simulink.AliasType object can directly represent a fixed-point
data type. You can use Simulink.AliasType to rename numeric data types
including integer, floating-point, and fixed-point types. You do not need to create a
Simulink.NumericType object.

Display of alias, base, or both data types in a model

Before R2017a, when you displayed signal data types on a block diagram by selecting
Display > Signals and Ports > Port Data Types, you were not able to control the
display of data type aliases. For example, if you used a Simulink.AliasType object to
set the data type of a signal, the diagram displayed only the alias. The diagram did not
display the underlying base data type (such as int16).

In R2017a, you can choose whether to display data type aliases, base data types, or both
for all of the signals in a model. In the model, choose an option for Display > Signals
and Ports > Port Data Type Display Format. You can temporarily or permanently
adjust this setting, which is saved with the model file, to:

• Control the appearance of the model to users who do not need to know the underlying
numeric data types.

• Inspect the numeric data types that signals use on a high level, especially while
designing and debugging fixed-point models.

More accurate comparison of nondouble data to specified minimum and
maximum values

You can specify minimum and maximum values for signals and block parameters in a
model. For example, in a Constant block, you can set Output minimum and Output

1-27

R2017a

maximum to specify design limits for the block output signal. You must set such a
design limit by using a literal number (with implicit data type double) or an expression
that yields a double number.

Before R2017a, if the data item (signal or block parameter) used a data type other than
double, Simulink:

1 Cast the nondouble value of the data item to double.
2 Compared the double value of the data item to the double value of the design limit.

If the storage and typecasts of the design limit or the data item incurred losses of
accuracy (quantization) or information (overflow), the comparison could unexpectedly
report a violation of the design limit.

In R2017a, before comparison, Simulink casts the data item and the design limit to the
same data type (the data type of the data item). Simulink does not cast the data item to
double unless you specify it. This more accurate technique can prevent the generation of
unnecessary, misleading errors and warnings. However, Simulink still stores the design
limit as double before comparison.

Compatibility Considerations

The more accurate comparison technique can cause new warnings or errors in R2017a
when you:

• Simulate an existing model.
• Run an existing script that sets the value, minimum, or maximum of a block

parameter in a model.
• Run an existing script that sets the Value, Min, or Max properties of a parameter

object (such as Simulink.Parameter).

For example, the R2016b comparison technique could have caused Simulink to overlook
limit violations when you used data types that have greater precision or range than
double. In R2017a, the new comparison technique can cause these limit violations to
generate warnings or errors.

• Use the Fixed-Point Tool or the Data Type Assistant to autoscale data items in a
fixed-point model. For each data item, these tools can propose a scaling that enables
the data item to represent the real-world minimum and maximum values that you

1-28

 Data Management

specify. See “Fixed-Point Tool” (Fixed-Point Designer) and “Specify Fixed-Point Data
Types”.

• Reduce the number of errors that you encounter while interacting with the model by:

• Using the Fixed-Point Tool to temporarily override data types to double. See
“Control Data Type Override”.

• Adjusting the setting for the configuration parameter Simulation range
checking from error to warning or none.

• Round a design limit to the next number furthest from zero that double can
represent. This technique can resolve a limit violation when the data type of the
data item has higher precision than double (for example, a fixed-point data type
with a 128-bit word length and a 126-bit fraction length) and double cannot exactly
represent the value of the design limit.

For example, if an existing model generates a new error in R2017a with the maximum
value of a signal set to 98.8847692348509014, at the command prompt, calculate
the next number furthest from zero that double can represent.

format long

98.8847692348509014 + eps(98.8847692348509014)

ans =

 98.884769234850921

Use the resulting number, 98.884769234850921, to replace the maximum value.

Deep copy of handle objects by
Simulink.ModelWorkspace.assignin

Before R2017a, the assignin method of a Simulink.ModelWorkspace object did not
deeply copy handle objects. As a result, modifications that you made to a handle object
in the source workspace (for example, the base workspace or a function workspace) also
affected the model workspace.

Suppose you used this code to create a Simulink.Parameter object named myVar and
assign myVar into the model workspace of a model named myModel:

myVar = Simulink.Parameter(5.2);

mdlwks = get_param('myModel','ModelWorkspace');

1-29

R2017a

assignin(mdlwks,'myVar',myVar);

Then, if you modified myVar in either the base workspace or the model workspace, the
modification affected myVar in both workspaces. Each instance of myVar stored a handle
to the same Simulink.Parameter object.

In R2017a, the assignin method performs a deep copy so modifications that you make
in the source workspace do not affect the model workspace. With this deep copy, in the
example, myVar in the model workspace is independent of myVar in the base workspace.

Use of From Workspace block in a model that uses a data dictionary

Prior to R2017a, if you linked a model to a data dictionary, the model could not contain
any From Workspace blocks.

In R2017a, when a model is linked to a data dictionary, From Workspace blocks can
acquire input data from variables that you store in the Design Data section of the
dictionary or in the other workspaces that From Workspace already supports. To use
variables that you store in the other workspaces, set the value of the Data parameter by
using a call to the evalin function.

Because you cannot store a timeseries object in the dictionary, to drive the From
Workspace block by using a timeseries object, you must:

1 Place the object in the base workspace.
2 In the From Workspace block, set the value of the Data parameter to, for example,

evalin('base','myTimeseriesObject'). The argument 'base' indicates that
the object is in the base workspace.

For more information, see From Workspace

Specify 64-bit integer data types without a Fixed-Point Designer license

Beginning in R2017a, specifying a 64-bit integer data type no longer requires a Fixed-
Point Designer™ license. To specify a 64-bit integer type, use the fixdt function. For
example, to specify an int64 or uint64 data type, set the output data type of a block to
fixdt(1,64,0), or to fixdt(0,64,0), respectively.

1-30

 Block Enhancements

Block Enhancements

Support for Scopes in For Each Subsystems

You can place a Scope block within a For Each Subsystem block.

If your model has a Scope block attached to the output port of a For Each Subsystem
block, you can move the Scope block into the subsystem block, attach signal lines, and
then delete the Outport block.

Scope Blocks: Support for nonvirtual bus and array of buses signals

You can connect nonvirtual bus signals and array of buses signals to a Scope block
(and to a Time Scope block if you have a DSP System Toolbox™ license). To display the
signals in the Scope block, use normal or accelerator simulation mode. For details, see
“Nonvirtual Bus and Array of Buses Signals” and “Save Simulation Data Using a Scope
Block”.

Specify image file icons for MATLAB System block

You can specify a MATLAB System block icon as an image file using a new option in the
MATLAB Editor. While editing your System object™, specify the image file by selecting
System Block > Add Image Icon. After specifying the image file, this code is added to
the System object class:

function icon = getIconImpl(~)

 % Define icon for System block

 icon = matlab.system.display.Icon('image.png');

end

For more information, see “Customize System Block Appearance”.

Copy scope to clipboard

To share the output of a signal simulation, copy the scope graphic to your clipboard by
selecting File > Copy to Clipboard. The scope colors are converted to a print-friendly
coloring. See “Share Scope Image”.

1-31

R2017a

Interactive legend for scopes

If you show a legend on your scope block or System object, you can use the legend to filter
which signals are shown. Left-clicking a signal in the legend hides all other signals in the
scope. Right-clicking a signal in the legend toggles whether the scope shows or hides the
signal.

Stem plot option for Scope block

In the Scope block, you can visualize your signal as a stem plot. From the View > Style
menu, select Plot type > Stem.

Simulink Blocks: Simulink implements same workflow when adding a
block through the user interface or the command line

When you add a block through the command line, Simulink now executes the block copy
function first and then sets the specified parameter values for the block.

Before R2017a, when you add a block through the command line, the parameter values
are set first and then the block copy function is executed.

Slider Gain block: Minimum and Maximum values must not be same

In R2017a and higher, the minimum values specified for the Slider Gain block must be
less than the maximum value specified. The minimum and maximum values must not be
same.

Default input signal attributes for MATLAB System block

In R2017a and higher, the default input signal attributes are defined if a MATLAB
System block has one or more inputs that are unconnected to another block’s output port
or connected to a port that has underspecified attributes.

1-32

 Block Enhancements

Additional calls to Propagation Methods getOutputDataTypeImpl,
getOutputSizeImpl and isOutputComplexImpl during the model
pre-compile phase

In addition to the model compile phase, propagation methods getOutputSizeImpl,
getOutputDataTypeImpl and isOutputcomplexImpl are called during the model
pre-compile phase.

Math Function block rem, mod, and pow function changes

The Math Function block rem and mod functions have these changes:

• For generated code, Simulink now applies output signedness for the rem and mod
functions when the output is 0.

• You may experience improved performance when using the rem and mod functions.

The Math Function block pow function has this change:

• For generated code and simulation, the pow function now returns 1.0 for these cases:

• 1^inf

• (-1)^inf

• (1)^(-inf)

• (-1)^(-inf)

In previous releases, the pow function returned NaN for these cases.

Trigonometric Function block asin, asinh, acos, and acosh function
changes

The Trigonometric Function block asin, asinh, acos, and acosh functions now perform
correct branch cut behavior for generated code and simulation. In previous releases:

• The asin and acos functions returned NaN in the real part of a complex number.
• The asinh and acosh functions returned NaN in the imaginary part of a complex.

1-33

R2017a

Dynamic memory allocation for unbounded arrays and large arrays

In R2017a, simulation and C/C++ code generation support dynamic memory allocation
for arrays in a System object associated with a MATLAB System block. Dynamic
memory allocation allocates memory as needed at run time, instead of allocating memory
statically on the stack. Dynamic memory allocation is beneficial when:

• You do not know the upper bound of an array.
• You do not want to allocate memory on the stack for large arrays.

By default, dynamic memory allocation is enabled. To disable it, in the Configuration
Parameters dialog box, on the All Parameters tab, in the Simulation Target >
Advanced parameters category, clear the Dynamic memory allocation in MATLAB
Function blocks check box.

When dynamic memory allocation is enabled, the code generator uses dynamic memory
allocation for arrays whose size is equal to or greater than a threshold. The default
value of this threshold is 64 kilobytes. To change the threshold, in the Configuration
Parameters dialog box, on the All Parameters tab, in the Simulation Target >
Advanced parameters category, set the Dynamic memory allocation threshold in
MATLAB Function blocks parameter.

Dynamic memory allocation does not apply to:

• Input and output signals. Variable-size input and output signals must have an upper
bound.

• Parameters or global variables. Parameters and global variables must be fixed-size.
• Fields of bus arrays. Bus arrays cannot have variable-size fields.
• Discrete state properties of System objects associated with a MATLAB System block.

See “Control Memory Allocation for Variable-Size Arrays in a MATLAB Function Block”
and “Use Dynamic Memory Allocation for Variable-Size Arrays in a MATLAB Function
Block”.

Better handling of promoted parameter

From R2017a, any change to the path of a promoted mask parameter is resolved
automatically. If the underlying block of the promoted mask parameter is deleted or
is moved within another mask, Simulink displays a warning during model load, model
simulation, and while using the set_param command on the promoted parameter.

1-34

 Connection to Hardware

Connection to Hardware

Wireless Connectivity: Use UDP and TCP/IP blocks to let Simulink
hardware targets communicate with each other

The following support packages now support wireless communication using UDP and
TCP/IP blocks:

• Simulink Support Package for Android™ Devices
• Simulink Support Package for Apple iOS Devices
• Simulink Support Package for Arduino® Hardware
• Simulink Support Package for LEGO® MINDSTORMS® NXT Hardware
• Simulink Support Package for Raspberry Pi™ Hardware

When you add UDP or TCP/IP blocks to models created in two of these support packages,
the models can communicate and transfer of data to each other directly during run time
on the hardware.

Support for print and println on Arduino Serial Transmit block

The Serial Transmit block now supports the print and println options so that you can
print data to the serial port.

Hardware plugin detection for Arduino boards in MATLAB, Simulink

Hardware plugin detection feature helps you to identify the devices that you can use
within MATLAB and Simulink when you plug in a new hardware into the host computer.

Blocks added to LEGO EV3 support package

This table lists the support for these new blocks.

Block Usage

TCP/IP Receive Receive TCP packets from a remote host.
TCP/IP Send Send TCP packets to a remote host.
UDP Receive Receive UDP packets from a remote host.

1-35

R2017a

Block Usage

UDP Send Send UDP packets to a remote host.

Blocks added to Raspberry Pi support package

This table lists the support for these new blocks.

Block Usage

I2C Master Write Write data to I2C slave device or I2C slave
device register.

I2C Master Read Read data from I2C slave device or I2C
slave device register.

SPI Master Transfer Write data to and read data from SPI slave
device.

SPI Register Write Write data to registers of an SPI slave
device.

SPI Register Read Read data from registers of SPI slave
device.

Serial Write Write data to serial device.
Serial Read Read data from serial device.
TCP/IP Receive Receive TCP packets from a remote host.
TCP/IP Send Send TCP packets to a remote host.
HTS221 Humidity Sensor Measure relative humidity and ambient

temperature (Sense HAT block).
LPS25h Pressure Sensor Measure barometric air pressure and

ambient temperature (Sense HAT block).
LSM9DS1 IMU Sensor Measure linear acceleration, angular rate

and magnetic field along X, Y, and Z axis
(Sense HAT block).

Joystick Read the state of five-position joystick
(Sense HAT block).

8x8 RGB LED Matrix Control pixel color of 8x8 RGB LED Matrix
(Sense HAT block).

1-36

 Connection to Hardware

Support for all Android smartphones and tablets

The Simulink Support Package for Android Devices supports all Android smartphones
and tablets using Android version 4.2 and higher.

Blocks added to Android support package

This table lists the new blocks available in the Simulink Support Package for Android
Devices.

Block Usage

TCP/IP Send Send TCP packets to a remote host.
TCP/IP Receive Receive TCP packets from a remote host.
Audio File Read Use an audio file from your desktop

computer on your mobile app.

Blocks added to Apple iOS support package

This table lists the new blocks available in the Simulink Support Package for Apple iOS
Devices.

Block Usage

TCP/IP Send Send TCP packets to a remote host.
TCP/IP Receive Receive TCP packets from a remote host.
Audio File Read Use an audio file from your desktop

computer on your mobile app.

Support for Scope block on Apple iOS and Android apps

The following support packages now support the Scope block:

• Simulink Support Package for Android Devices
• Simulink Support Package for Apple iOS Devices

When you add a Scope block to a model created using one of these support packages, an
equivalent real-time scope display is added to the mobile app user interface.

1-37

R2017a

MATLAB Function Blocks

Dynamic memory allocation for unbounded arrays and large arrays

In R2017a, simulation and C/C++ code generation support dynamic memory allocation
for arrays in a MATLAB Function block, a Stateflow chart, or a System object associated
with a MATLAB System block. Dynamic memory allocation allocates memory as needed
at run time, instead of allocating memory statically on the stack. Dynamic memory
allocation is beneficial when:

• You do not know the upper bound of an array.
• You do not want to allocate memory on the stack for large arrays.

By default, dynamic memory allocation is enabled for GRT-based targets and disabled
for ERT-based targets. To change the setting, in the Configuration Parameters dialog
box, on the All Parameters tab, in the Simulation Target > Advanced parameters
category, clear or select the Dynamic memory allocation in MATLAB Function
blocks check box.

When dynamic memory allocation is enabled, the code generator uses dynamic memory
allocation for arrays whose size is equal to or greater than a threshold. The default
value of this threshold is 64 kilobytes. To change the threshold, in the Configuration
Parameters dialog box, on the All Parameters tab, in the Simulation Target >
Advanced parameters category, set the Dynamic memory allocation threshold in
MATLAB Function blocks parameter.

Dynamic memory allocation does not apply to:

• Input and output signals. Variable-size input and output signals must have an upper
bound.

• Parameters or global variables. Parameters and global variables must be fixed-size.
• Fields of bus arrays. Bus arrays cannot have variable-size fields.
• Discrete state properties of System objects associated with a MATLAB System block.

See “Control Memory Allocation for Variable-Size Arrays in a MATLAB Function Block”
and “Use Dynamic Memory Allocation for Variable-Size Arrays in a MATLAB Function
Block”.

1-38

 MATLAB Function Blocks

Nested functions

In R2017a, you can use nested functions in MATLAB code in a MATLAB Function block.
When you use nested functions, adhere to these restrictions:

• If the parent function declares a persistent variable, it must assign the persistent
variable before it calls a nested function that uses the persistent variable.

• A nested recursive function cannot refer to a variable that the parent function uses.
• If a nested function refers to a structure variable, you must define the structure by

using struct.
• If a nested function uses a variable defined by the parent function, you cannot use

coder.varsize with the variable in either the parent or the nested function.
• You cannot use nested functions in MATLAB action language used by a Stateflow

chart.

Also, you must adhere to the code generation restrictions for value classes and handle
classes.

Handle classes in value classes

In R2017a, in MATLAB code in a MATLAB Function block, you can use value classes
that contain handle classes. The handle class can be one that you define or a predefined
handle class that is available with MATLAB or a MATLAB toolbox. Predefined handle
classes, such as toolbox System objects, must be supported for C/C++ code generation.
See “Functions and Objects Supported for C/C++ Code Generation — Category List”.

For example, suppose that myclass is a value class and myhandle is a handle class. A
MATLAB Function block can contain code such as:

obj = myclass;

obj.p1 = myhandle;

obj.p2 = dsp.Mean;

The code generation limitations for handle class objects apply to handle class objects in
value classes. See Code generation limitations for handle class objects.

Constant folding of value classes

In R2017a, you can use coder.const to constant-fold value classes.

1-39

R2017a

The code generator tries to fold constant expressions into the generated code. Constant
folding uses the value of a constant expression instead of the expression in the generated
code. Constant folding can improve execution time because the generated code does not
have to evaluate the expression multiple times. You can try to force the code generator to
constant- fold an expression by using coder.const.

To constant-fold a value class object obj, use this syntax:

coder.const(obj)

To constant-fold the property prop, use this syntax:

coder.const(obj.prop)

Class properties and structure fields passed by reference to external C
functions

To pass arguments by reference to an external C function, you use coder.ref,
coder.rref, or coder.wref in a coder.ceval call. For example:

...

x = 1;

y = coder.ceval('myCFunction', coder.ref(x));

...

In previous releases, the argument that you passed by reference had to be a scalar
variable or an element of an array. To pass a class property or structure field, you had to
first assign the property or field to a variable. For example:

...

x = myClass;

x.prop = 1;

v = x;

coder.ceval('foo', coder.ref(v));

...

In R2017a, you can directly pass a class property or structure field by reference. For
example:

• Pass a class property

...

x = myClass;

1-40

 MATLAB Function Blocks

x.prop = 1;

coder.ceval('foo', coder.ref(x.prop));

...

• Pass a structure field

...

s = struct('s1', struct('a', [0 1]));

coder.ceval('foo', coder.wref(s.s1.a));

...

• Pass a field of an element of an array of structures

...

s = struct('c', [1 2], 'd', 2);

s1 = struct('a', [s s]);

coder.ceval('foo', coder.rref(s1.a(1).d));

...

Function specialization prevention with coder.ignoreConst

At compile time, if an input argument to a function call evaluates to a constant, the code
generator can use the constant value to produce function specializations. A function
specialization is a version of a function in which the input type, size, complexity, or
value is customized for a particular invocation of the function. To prevent function
specializations due to constant arguments, instruct the code generator to treat the value
of the argument as a nonconstant value by using coder.ignoreConst.

With compile-time recursion, the code generator produces function specializations
instead of a recursive call. If the specializations are due to a constant input argument
to the recursive function, you might be able to force run-time recursion by using
coder.ignoreConst. See “Force Code Generator to Use Run-Time Recursion”.

New coder.unroll syntax for more readable code

In R2017a, coder.unroll has a new syntax that helps make your code more readable.

In previous releases, you put coder.unroll inside a for-loop. For example:

...

for i = coder.unroll(1:n)

 y(i) = rand();

end

1-41

R2017a

...

With the new syntax, you put coder.unroll on a line by itself, immediately before the
loop that it unrolls. For example:

...

coder.unroll();

for i = 1:n

 y(i) = rand();

end

...

Here is an example of the new syntax with the flag argument:

...

unrollflag = n < 10;

coder.unroll(unrollflag);

for i = 1:n

 y(i) = rand();

end

...

Both the new syntaxes and the syntaxes from previous releases are supported. For more
readable code, use the new syntax.

For more information about coder.unroll and for-loop unrolling, see coder.unroll
and “Unroll for-Loops”.

Size argument for coder.opaque

In R2017a, you can specify the size of a variable that you declare with coder.opaque.
The syntax with the size argument is:

x = coder.opaque(type,value,'Size', size)

Specify the size in bytes. For example, declare x1 to be a 4-byte integer with initial value
0.

x1 = coder.opaque('int','0', 'Size', 4);

Code generation for more MATLAB functions

• cholupdate

1-42

 MATLAB Function Blocks

• histcounts

• ismethod

Code generation for more Audio System Toolbox System objects

audioPlayerRecorder

For C/C++ code generation usage notes and limitations, see the reference page.

Code generation for more Communications System Toolbox System
objects

comm.RBDSWaveformGenerator

For C/C++ code generation usage notes and limitations, see the reference page.

Code generation for more DSP System Toolbox System objects

• dsp.HampelFilter
• dsp.AsyncBuffer

For C/C++ code generation usage notes and limitations, see the System object reference
page.

Code generation for more Phased Array System Toolbox System objects

• bw2range

• diagbfweights

• scatteringchanmtx

• waterfill

• phased.BackScatterSonarTarget
• phased.DopplerEstimator
• phased.IsoSpeedUnderWaterPaths
• phased.IsotropicHydrophone
• phased.IsotropicProjector

1-43

R2017a

• phased.MultipathChannel
• phased.RangeEstimator
• phased.RangeResponse
• phased.ScatteringMIMOChannel

For C/C++ code generation usage notes and limitations, see the function or System object
reference page.

Code generation for more Robotics System Toolbox functions and classes

• robotics.AimingConstraint
• robotics.Cartesianbounds
• robotics.GeneralizedInverseKinematics
• robotics.InverseKinematics
• robotics.Joint
• robotics.JointPositionBounds
• robotics.PoseTarget
• robotics.PositionTarget
• robotics.OrientationTarget
• robotics.RigidBody
• robotics.RigidBodyTree
• transformScan

For C/C++ code generation usage notes and limitations, see the function or class
reference page.

Code generation for more Signal Processing Toolbox functions

• alignsignals

• cconv

• convmtx

• corrmtx

• envelope

• finddelay

1-44

 MATLAB Function Blocks

• hilbert

• sgolayfilt

• sinc

• xcorr2

• xcov

For C/C++ code generation usage notes and limitations, see the function or class
reference page.

Statistics and Machine Learning Toolbox Code Generation: Generate C
code for prediction by using linear models, generalized linear models,
decision trees and ensembles of classification trees

You can generate C code that predicts responses by using trained linear models,
generalized linear models (GLM), decision trees, or ensembles of classification trees. The
following prediction functions support code generation.

• predict — Predict responses or estimate confidence intervals on predictions by
applying a linear model to new predictor data.

• predict or glmval — Predict responses or estimate confidence intervals on predictions
by applying a GLM to new predictor data.

• predict or predict — Classify observations or estimate classification scores by applying
a classification tree or ensemble of classification trees, respectively, to new data.

• predict — Predict responses by applying a regression tree to new data.

For C/C++ code generation usage notes and limitations, see the function reference page.

Enhancement to synchronous subsystem support

For a MATLAB Function block inside a synchronous subsystem, you can now use the
combinational and sequential logic portions in one MATLAB function. Previously, you
created two separate MATLAB Function blocks, one for the combinational logic, and the
other for the sequential logic.

To use the combinational and sequential logic portions inside one MATLAB Function
block, in the Ports and Data Manager dialog box, select the Allow direct feedthrough
checkbox. The output function can then depend on inputs and persistent variables. For

1-45

R2017a

example, you can now use this MATLAB function that has two outputs, with one output
depending on the input, and the other output depending on a persistent variable.

function [y1, y2] = fcn(u, v)

persistent p;

if isempty(p)

 p = uint8(0);

end

y1 = p;

y2 = v;

p = u;

If you have HDL Coder™, you can use the MATLAB Function block inside a synchronous
subsystem to generate cleaner HDL code and use fewer hardware resources. See also
State Control.

Support for tunable structure array parameters

You can now use a tunable structure array parameter with the MATLAB Function block.
Previously, you used a tunable structure of scalar values or nontunable parameters with
structure arrays.

State behavior specification for function-call input events

If you define a function-call input event for a MATLAB Function block, you can now
specify the state behavior when this event reenables the block. To specify this behavior,
use the States When Enabling block parameter located in either:

• The Properties > Advanced section of the Property Inspector
• The Ports and Data Manager dialog box

When you set States When Enabling to held, the simulation maintains the most
recent values of the states when the function-call event reenables the MATLAB Function
block. If you set States When Enabling to reset, the function-call event reverts states
to their initial conditions.

1-46

 S-Functions

S-Functions

Functionality being Removed or Changed

Functionality Result Use Instead Compatibility
Considerations

Level-1 Fortran S-
Functions

Still runs. Level-2 Fortran S-
Functions

Level-1 Fortran
S-Functions will
continue to work but
no documentation
support will be
provided. Use the
Level-2 Fortran S-
Functions instead.

1-47

R2016b
Version: 8.8

New Features

Bug Fixes

Compatibility Considerations

R2016b

Simulation Analysis and Performance

Just-in-Time Acceleration Builds: Quickly build the top-level model for
improved performance when running simulations in Accelerator mode

When you simulate a model in accelerator mode, Simulink now uses Just-in-Time (JIT)
acceleration to speed up the building of the accelerator target for the top-level model.
Using JIT, Simulink generates an execution engine in memory instead of generating
C code or MEX files during simulation. JIT provides the best performance for the
generation of the accelerator target for a model.

For more information, see Accelerator Mode, or watch this video to learn more.

If you want to simulate your model using the classic, C-code generating, accelerator
mode, run the following command:

set_param(0, 'GlobalUseClassicAccelMode', 'on');

Dataset Signal Plot: View and analyze dataset signals directly from the
MATLAB command line

Use plot to plot dataset signals in the Signal Preview window for
Simulink.SimulationData.Dataset and Simulink.SimulationData.DatasetRef objects.

Watch this video to learn more.

Multi-State Image Dashboard Block: Display different images based on
the signal value

The Dashboard block library now includes a Multi-state Image block that you can use to
display changes in signal values. After adding the block to your model, double-click the
block and select signals whose states you want to capture visually. For each state, select
a value and an image to display. When the value of a signal changes, the block displays
the image that you set up for that particular value.

Simplified tasking mode setup

Previously, you set the tasking mode for your model using the Tasking mode for
periodic sample times drop-down in the Configuration Parameters dialog box.

2-2

http://www.mathworks.com/help/releases/R2016b/simulink/ug/how-the-acceleration-modes-work.html#brcp5hx-1
http://www.mathworks.com/videos/just-in-time-acceleration-builds-120868.html
http://www.mathworks.com/help/releases/R2016b/simulink/slref/simulink.simulationdata.dataset.plot.html
http://www.mathworks.com/help/releases/R2016b/simulink/slref/simulink.simulationdata.dataset-class.html
http://www.mathworks.com/help/releases/R2016b/simulink/slref/simulink.simulationdata.datasetref-class.html
http://www.mathworks.com/videos/dataset-signal-plot-120866.html

 Simulation Analysis and Performance

You were also able to set the tasking mode programmatically using the SolverMode
parameter.

In R2016b, a simple check box labeled Treat each discrete rate as a separate
task replaces the drop-down. The command-line equivalent of this parameter is
EnableMultiTasking.

 Tasking mode for periodic
sample times

Treat each discrete rate as a
separate task

Command-line parameter SolverMode EnableMultiTasking

Auto, Multitasking On (enables multitasking
mode)

Parameter values

SingleTasking Off (enables single-tasking
mode)

If you select the check box, single-tasking mode is used in these cases:

• Your model contains one sample time.
• Your model contains a continuous and a discrete sample time, and the fixed step size

is equal to the discrete sample time.

For more information, see Treat each discrete rate as a separate task.

Compatibility Considerations

By default, new models now have the single-tasking mode enabled, whereas they had the
Auto tasking mode enabled previously.

Further, if you have references to SolverMode in your scripts, replace those references
with EnableMultiTasking. Use the permissible values for EnableMultiTasking to
specify the tasking mode.

Diagnostic Suppressor: Suppress specific simulation warnings on
particular blocks

The Diagnostic Viewer in Simulink now includes an option to suppress certain
diagnostics. This feature enables you to suppress warnings for specific objects in your
model. Click the Suppress this warning button next to the warning in the Diagnostic

2-3

http://www.mathworks.com/help/releases/R2016b/simulink/gui/treat-each-discrete-rate-as-a-separate-task.html

R2016b

Viewer to suppress the warning from the specified source. You can restore the warning
from the source by clicking Restore this warning.

You can also control the suppressions from the command line. For more information, see
Suppress Diagnostic Messages Programmatically.

Diagnostic Viewer: Improved build diagnostics display

Diagnostic Viewer detects compiler errors and warnings generated during model build
and reports them with the ability to navigate to the source of the problem.

Export functions allow periodic function calls

Export functions have been enhanced to allow periodic function calls. In addition, you
can now use the sample time of each export function call in your model to control the
scheduling of triggers. The order of the function-call triggers is determined by the sample

2-4

http://www.mathworks.com/help/releases/R2016b/simulink/ug/suppress-diagnostic-messages.html

 Simulation Analysis and Performance

times of their corresponding export-function blocks. Using the sample time provides more
fine-grained control over how function-call triggers are scheduled in your model.

These enhancements provide the following advantages:

• Multiple exported functions can have the same execution period.
• Simulink now checks for sample time consistency in export functions.
• Export-function models support auto step size and dataset logging.
• Sample time optimization results in more efficient code.

For more information, see Export-Function Models.

Compatibility Considerations

As a result of this enhancement, the root outport logging behavior for export-function
models in standalone simulations has changed. Previously, logging of root output ports
for export-function models was inconsistent with the multitasking behavior of regular
Simulink models, resulting in missing periodic rates in the logged output. Now, export-
function models supports multitasking logging and dataset logging, which enable correct
logging of all periodic rates from root output ports.

If you rely on the previous logging behavior, you can enable dataset logging to get the
old output back. Note that dataset logging does not support asynchronous rate. In those
cases, specify the base rate in the root input ports.

2-5

http://www.mathworks.com/help/releases/R2016b/simulink/ug/export-function-models.html

R2016b

Simulink Editor

Property Inspector: Edit parameters and properties of model elements
using a single interface

The Simulink Editor enables you to use a single interface to edit parameters and
properties for any model element. When you display the Property Inspector, it becomes
part of the model editing window. Select View > Property Inspector to open this
interface. You can leave the Property Inspector open as you build your model, and
it updates with your selection. To learn more about setting properties, see Setting
Properties and Parameters, or watch this video to learn more.

You can use the Property Inspector to edit:

• Block parameters and properties
• Stateflow elements
• Annotations, areas, and images
• Signals
• Model properties

Edit-Time Checking: Detect and fix potential issues in your model at
design time

The Errors and Warnings option enables edit-time checking, providing you with visual
cues about issues with your model. To display information about an issue, hover the
cursor over the highlighted block and click the error or warning icon.

Simulink detects the following block errors and warnings:

• Goto and From block mismatches.
• Duplicate data store blocks. The value of the Duplicate data store names parameter

determines if there is a visual cue, and if the cue is an error or warning.

The Errors and Warnings option, is enabled by default. To turn off this option, in the
model window, select Display > Errors & Warnings.

For more information, see Model Design Error Detection.

2-6

http://www.mathworks.com/help/releases/R2016b/simulink/ug/using-the-model-editor.html#bvbnjys-1
http://www.mathworks.com/help/releases/R2016b/simulink/ug/using-the-model-editor.html#bvbnjys-1
http://www.mathworks.com/videos/in-canvas-property-editing-120869.html
http://www.mathworks.com/help/releases/R2016b/simulink/gui/duplicate-data-store-names.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/using-the-model-editor.html#bvea91r-1

 Simulink Editor

Finder: Search for model elements using improved interface

The interface for searching by way of Edit > Find (Ctrl+F) is improved in R2016b. To
learn how to search using this interface, see Find Model Elements in Simulink Models.

Annotations in Libraries: Add annotations from libraries into models

In R2016b, you can add annotations to custom libraries for the user of the library to add
to their model. To learn how to add an annotation to a library that appears in the Library
Browser, see Create a Custom Library. Add annotations to your model from a library
using the same techniques you use for adding blocks.

Library Browser: Expand or collapse libraries by default

You can customize the display of any library in the Library Browser tree to expand or
collapse by default. See Customize Library Browser Appearance.

Library Browser API: Programmatically refresh the Library Browser

Using the refresh method with the Library.LibraryBrowser2 class,
you can programmatically refresh the library browser. To learn more, see
LibraryBrowser.LibraryBrowser2.

Compatibility Considerations

In previous releases, these two commands returned
LibraryBrowser.LibraryBrowser2:

lb = slLibraryBrowser

lb = LibraryBrowser.LibraryBrowser2

In R2016b, each returns LibraryBrowser.LBStandalone. However, the API to access
Library Browser operations such as show and refresh has not otherwise changed.

Annotations: Click once to select annotation

In previous releases, a single click on an annotation prompted you to edit the annotation
text instead of selecting the annotation frame. In R2016b, click one time to select the

2-7

http://www.mathworks.com/help/releases/R2016b/simulink/ug/locate-simulink-objects-using-find.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/creating-block-libraries.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/customizing-the-library-browser.html
http://www.mathworks.com/help/releases/R2016b/simulink/slref/librarybrowser.librarybrowser2-class.html

R2016b

annotation frame, which you can then drag or right-click to access the content menu.
Click a selected annotation to edit the text.

Default Model Font: Specify default font for model elements

You can now set the default font for models. Setting the default font affects any existing
model elements whose font you have not set manually as well as new model elements.
In your model, with no selection, select Diagram > Format > Font Styles for Models.
See Specify Fonts in Models. To use that font in new models, set the default font in the
default template. See “Default Model Template: Use your own customized settings when
creating new models” on page 2-15.

Simulink Preferences: Simplified and reorganized interface

Simulink Preferences now includes three panes:

• General pane for generated file folders, background colors for printing and exporting,
and model display options

• Editor pane for customizing the Simulink Editor
• Model File pane for file saving options, including version notifications

Settings that are saved with the model no longer appear in Preferences. Use default
templates for these settings instead of preferences. For more information, see “Default
Model Template: Use your own customized settings when creating new models” on page
2-15.

For more information on the new Simulink Preferences panes, see Set Simulink
Preferences.

Simulink Editor Fonts: FreeType font engine replaces Windows GDI font
engine

On Windows® system, Simulink now uses the FreeType font engine. In previous releases,
it used the Windows graphics device interface (GDI) font engine. This change improves
the appearance of text in the user interface of the Simulink Editor.

If you are using a language that uses non-Latin characters, you might need to change the
font in the editor to one that supports your language. To set defaults for a model, with no

2-8

http://www.mathworks.com/help/releases/R2016b/simulink/ug/changing-a-blocks-appearance.html#bvckknr-1
http://www.mathworks.com/help/releases/R2016b/simulink/gui/set-simulink-preferences.html
http://www.mathworks.com/help/releases/R2016b/simulink/gui/set-simulink-preferences.html

 Simulink Editor

selection in the Simulink Editor, select Diagram > Format > Font Styles for Model.
Change the font using the dialog box.

2-9

R2016b

Component-Based Modeling

Initialize and Terminate Function Blocks: Respond to events to model
dynamic startup and shutdown behavior

Use an Initialize Function block with a State Writer block to set the state of a block in
response to an initialize event. By default, the Initialize Function block includes a State
Writer block and an Event Listener block with the Event parameter set to Initialize.

Use the Terminate Function block with a State Reader block to read the state of a block
in response to a terminate event. By default, the Terminate Function block includes
a State Reader block and an Event Listener block with the Event parameter set to
Terminate.

Applications for these new blocks include:

• Starting up and shutting down an application component
• Initial condition calculations
• Save and restore state from nonvolatile memory

For more information, see Initialize Function, Terminate Function, Event Listener, State
Reader, and State Writer block reference. Watch this video to learn more

Variant Subsystem Condition Propagation: Automatically assign variant
conditions to blocks outside the subsystem for improved performance

When you specify variant conditions in models containing Variant Subsystem blocks,
Simulink propagates these conditions outside to determine which components of the
model are active during simulation.

A variant condition can be either a condition expression or a variant object.

For more information, see Condition Propagation with Variant Subsystem, or watch this
video to learn more.

Simulink Units Updates

These are changes to the Simulink Units:

• Allowed Units list:

2-10

http://www.mathworks.com/help/releases/R2016b/simulink/slref/initializefunction.html
http://www.mathworks.com/help/releases/R2016b/simulink/slref/terminatefunction.html
http://www.mathworks.com/help/releases/R2016b/simulink/slref/eventlistener.html
http://www.mathworks.com/help/releases/R2016b/simulink/slref/statereader.html
http://www.mathworks.com/help/releases/R2016b/simulink/slref/statereader.html
http://www.mathworks.com/help/releases/R2016b/simulink/slref/statewriter.html
http://www.mathworks.com/videos/initialize-and-terminate-functions-120872.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/condition-propagation-with-variant-subsystem.html
http://www.mathworks.com/videos/variant-condition-propagation-120864.html
http://www.mathworks.com/videos/variant-condition-propagation-120864.html

 Component-Based Modeling

• The ASCII symbol of the reduced_Planck_constant unit has changed to h_bar. In
R2016a, this symbol was hbar. Starting in R2016b, hbar refers to hectobar.

• Starting in R2016b, the dalton unit no longer allows the use of SI prefixes. In
R2016a, the dalton unit incorrectly allowed the use of SI prefixes.

• Starting in R2016b, the deg unit is listed in both the English and SI (extended)
units lists. In R2016a, the deg unit was listed in only the SI (extended) list.

• Starting in R2016b, the au unit refers to astronomical unit. In R2016a, au
incorrectly referred to attodalton.

• Unit matching — As you type your unit in the Unit parameter, the software now
suggests close, but not exact, unit matches highlighted with a star.

• Unit mismatching handling — Now when you click on the mismatched units warning
badge, the dialog lets you go to either the source or destination where the unit is
specified.

• Undefined units handling — The Model Advisor check now has a column with
suggested unit alternatives that are a close match to the Simulink unit database.

Additional SimStruct Functions to Specify Units for Input and Output
Ports

To specify units for S-function input and output ports, use these SimStruct functions:

• ssGetInputPortUnit
• ssGetOutputPortUnit
• ssRegisterUnitFromExpr
• ssSetInputPortUnit
• ssSetOutputPortUnit

Additional heterogeneous targets supported for concurrent execution

When configuring a model for concurrent execution, you can now build and download
partitions of the model to these additional heterogeneous targets:

• Altera® Cyclone® SoC Rev. C development kit target
• Altera Cyclone SoC Rev. D development kit target
• Arrow® SoCKit development board target

2-11

http://www.mathworks.com/help/releases/R2016b/simulink/sfg/ssgetinputportunit.html
http://www.mathworks.com/help/releases/R2016b/simulink/sfg/ssgetoutputportunit.html
http://www.mathworks.com/help/releases/R2016b/simulink/sfg/ssregisterunitfromexpr.html
http://www.mathworks.com/help/releases/R2016b/simulink/sfg/sssetinputportunit.html
http://www.mathworks.com/help/releases/R2016b/simulink/sfg/sssetoutputportunit.html

R2016b

For more information, see Specify a Target ArchitectureExport-Function Models.

Simulink.BusElement: SamplingMode property removed to support
having blocks specify whether to treat inputs as frame-based signals

The SamplingMode property of Simulink.BusElement objects has been removed in
R2016b. Specify the sampling mode (sample-based and frame-based) of input signals at
the block level instead of at the signal level.

Compatibility Considerations

Scripts that use the SamplingMode property of Simulink.BusElement objects continue
to work in R2016b. However, support for SamplingMode will be removed in a future
release.

Export functions allow periodic function calls

Export functions have been enhanced to allow periodic function calls. In addition, you
can now use the sample time of each export function call in your model to control the
scheduling of triggers. The order of the function-call triggers is determined by the sample
times of their corresponding export-function blocks. Using the sample time provides more
fine-grained control over how function-call triggers are scheduled in your model.

These enhancements provide the following advantages:

• Multiple exported functions can have the same execution period.
• Simulink now checks for sample time consistency in export functions.
• Export-function models support auto step size and dataset logging.
• Sample time optimization results in more efficient code.

For more information, see Export-Function Models.

Compatibility Considerations

As a result of this enhancement, the root outport logging behavior for export-function
models in standalone simulations has changed. Previously, logging of root output ports
for export-function models was inconsistent with the multitasking behavior of regular
Simulink models, resulting in missing periodic rates in the logged output. Now, export-

2-12

http://www.mathworks.com/help/releases/R2016b/simulink/ug/export-function-models.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/export-function-models.html

 Component-Based Modeling

function models supports multitasking logging and dataset logging, which enable correct
logging of all periodic rates from root output ports.

If you rely on the previous logging behavior, you can enable dataset logging to get the
old output back. Note that dataset logging does not support asynchronous rate. In those
cases, specify the base rate in the root input ports.

Variant Refresh: Improved performance with removal of live refresh

Simulink models offer better performance with the removal of live refresh of active
models that contain Variant Subsystem blocks.

To update or refresh such models, click Diagram > Refresh Blocks (Ctrl + K) or
Simulation > Update Diagram (Ctrl + D) in Simulink.

Variant Subsystem: Convert Subsystems with physical ports to Variant

You can convert a Subsystem block that contains physical ports to a Variant Subsystem
block.

To do so, right-click the Subsystem block, in the context menu, click Subsystem &
Model Reference > Convert Subsystem to > Variant Subsystem.

Variant Reducer: Additional model reduction modes in Variant Reducer
(requires SLDV product license)

Use the Variant Reducer to reduce a variant model based on any one of these reduction
modes:

• Variant control variable values in the global workspace.
• Variant control values specified as a comma-separated list.
• Variant configuration data object.

For more information, see Reduce Models Containing Variant Blocks.

Enhanced find_mdlrefs function: Keep models loaded that the function
loads

The find_mdlrefs function loads models in the model reference hierarchy of the model
that you specify. By default, the function closes those models, except for models

2-13

http://www.mathworks.com/help/releases/R2016b/simulink/ug/reduce-models-containing-variant-configurations.html
http://www.mathworks.com/help/releases/R2016b/simulink/slref/find_mdlrefs.html

R2016b

that were already loaded before execution of the function. You can now use the
KeepModelsLoaded name-value pair to keep all the models loaded that the function
loads.

Subsystem conversion to referenced models: Automatic subsystem
wrapper and improved Goto and From block handling

The Model Reference Conversion Advisor and
Simulink.SubSystem.convertToModelReference function conversion creates a
wrapper subsystem automatically if the conversion modifies the Model block interface by
adding ports. The wrapper subsystem preserves the layout of the top model.

The conversion process no longer generates an error when Goto and From block pairs
cross model reference boundaries. The conversion automatically fixes the model,
regardless of how you set the Fix errors automatically ('Autofix') option. The
conversion now produces a message highlighting the changes it made, so that you can
determine whether the changes produce the desired results.

For more information, see Convert a Subsystem to a Referenced Model and
Simulink.SubSystem.convertToModelReference.

Disallow multiple iterations of root Inport function-call with discrete
sample time

For a function-call root Inport block with a discrete sample time vector, you cannot have
multiple times at the same sample time.

2-14

http://www.mathworks.com/help/releases/R2016b/simulink/ug/convert-a-subsystem-to-a-referenced-model.html
http://www.mathworks.com/help/releases/R2016b/simulink/slref/simulink.subsystem.converttomodelreference.html

 Project and File Management

Project and File Management

Default Model Template: Use your own customized settings when creating
new models

In R2016b, you can specify a model template to use for all new models. Create a model
with the configuration settings and blocks you want, then export the model to a template.
To reuse these settings in every new model, make the new template your default model
template using the Simulink start page or the Simulink.defaultModelTemplate function.

In R2016b, after setting a default model template, every new model uses that template,
for example, when you press Ctrl+N, when you use new model buttons, or when you use
new_system. In the Simulink Editor, the default template name appears at the top of
the list when you select File > New > MyDefaultTemplateName.

For details, see Use Customized Settings When Creating New Models, or watch this
video to learn more.

Compatibility Considerations

Action R2016a R2016b

Create new models using:

• Ctrl+N in the Editor
or start page.

• New model toolbar
buttons in the Editor
and Library Browser

• new_system

Factory
default blank
model

You can specify your default template.

Until you choose a new default template, the
default template remains the blank model.

Specify configuration
setting defaults

You could
use Simulink
Preferences to
specify default
parameters for
new models.

The configuration defaults, font defaults,
and display defaults are removed from the
Simulink Preferences dialog box in R2016b.
Use a model template instead.

If you previously saved configuration
defaults in the Simulink Preferences, in
R2016b, Simulink converts these settings

2-15

http://www.mathworks.com/help/releases/R2016b/simulink/slref/simulink.defaultmodeltemplate.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/create-models-and-open-existing-models.html#bvew6z3-1
http://www.mathworks.com/videos/default-model-template-120870.html
http://www.mathworks.com/videos/default-model-template-120870.html

R2016b

Action R2016a R2016b

to a model template, called Converted
Simulink Preferences in the start page.

If you previously specified configuration
defaults and ran scripts on the
root block diagram, then to use
the old behavior, run the script
enablePreferencesCompatibilityMode.

Specify model fonts You could not
change fonts
in existing
models.

In the Simulink Editor, with no model
element selected, choose Diagram >
Format > Font Styles for Model. To
use the specified fonts as defaults for new
models, export the model to a template.

Upgrade Advisor API: Automate the process of upgrading large model
hierarchies

In R2016b, you can call upgrade or analyze on the output argument of the
upgradeadvisor function. You can use the API to analyze only or also perform
automatic fixes where available.

For details, see upgradeadvisor, or watch this video to learn more.

Project-Wide Search: Search inside all models and supporting files

Search across all your project files in one place. You can find matches inside model files,
MATLAB files, and other project files such as PDF and Microsoft® Word files. On the
Simulink Project tab, click Search and enter some characters to search for.

Open search results to locate specific items, e.g., highlight blocks in models, specific lines
in MATLAB files. Filter results by file type, status, or label.

For details, see Search Inside Project Files and Filter File Views.

2-16

http://www.mathworks.com/help/releases/R2016b/simulink/slref/upgradeadvisor.html
http://www.mathworks.com/videos/upgrade-advisor-api-120865.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/search-and-filter-file-views.html

 Project and File Management

Refactoring Tools: Rename folders and automatically replace all
references

In a Simulink project, when you rename a folder, the project checks for impact in other
project files and offers fixes. You can find and fix impacts and avoid refactoring pain
tracking down other affected files. Automatic renaming is helpful in preventing errors
that result if you change names or paths manually and overlook or mistype one or more
instances of the name.

For details, see Automatic Updates When Renaming, Deleting, or Removing Files.

Project Toolbox Analysis: Find products and toolboxes used by a project

In a Simulink project, in the Impact graph view, you can find the required toolboxes for
the whole project or for selected files. You can see which products a new team member
requires to use the project, or find which file is introducing a product dependency.

For details, see Find Required Toolboxes.

Project Derived File Analysis: Find out-of-date .p, .slxp. and .mex files
in a project

In a Simulink project, you can run checks to ensure your derived files are up to date, and
choose to rebuild the files.

After running dependency analysis, the Impact view shows:

• Relationships between source and derived files (such as .m and .p files, slx/slxp,
ssc/sscp, c/mex files).

• Warnings when any derived file is out of date compared to its source file.

New project checks help you manage derived files:

• You can automatically rebuild out-of-date P-code files by running the project checks.
• If you rename a source file, the project detects impact in the derived file and prompts

you to update it.

For details, see Check Dependency Results and Resolve Problems.

2-17

http://www.mathworks.com/help/releases/R2016b/simulink/ug/move-rename-copy-or-delete-project-files.html#bu5myet
http://www.mathworks.com/help/releases/R2016b/simulink/ug/perform-impact-analysis.html#bve660a-1
http://www.mathworks.com/help/releases/R2016b/simulink/ug/check-dependency-results-and-resolve-problems.html

R2016b

Project Export Profiles: Share specified files to zip archive

You can specify export profiles to control the project files you send to a zip archive. You
can choose to exclude files, for example, when sharing a release version.

For details, see Archive Projects in Zip Files.

Project Batch Job Report: Archive results in a document

After running a batch job on project files, you can view and archive results in a batch job
file. For details, see Run a Simulink Project Batch Job and Publish Report.

Git Submodules: Include submodules in your project

You can specify Git submodules to include in your project, to reuse code from another
repository.

For details, see Add Git Submodules.

C/C++ file dependency analysis: View dependencies between C/C++
source and header files in the Impact graph

Use Simulink Project dependency analysis to explore dependencies between C/C++
source and header files in the impact graph.

For details, see Perform Impact Analysis.

Updated source control SDK: Write a source control integration providing
file-based actions and annotations

You can use the source control Software Development Kit (SDK) to integrate Simulink
Project with third-party source control tools. You can now use the updated SDK to
write a source control integration that can provide file-based actions and annotations.
An integration written using this API works with R2016b onwards. If you require a
backwards-compatible integration, you can continue to use the old interfaces.

For details, see Write a Source Control Integration with the SDK.

2-18

http://www.mathworks.com/help/releases/R2016b/simulink/ug/archive-projects-in-zip-files.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/run-a-simulink-project-batch-job.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/set-up-git-source-control.html#bvdl7u7-1
http://www.mathworks.com/help/releases/R2016b/simulink/ug/perform-impact-analysis.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/write-a-source-control-adapter-with-the-sdk.html

 Project and File Management

Diff Tools: Customize external source control tools to use MATLAB to
compare and merge

Use MATLAB Comparison tool to review changes to files such as MAT data and data
dictionaries from your external source control client.

For details, see Customize External Source Control to Use MATLAB for Diff and Merge.

SVN Cleanup: Fix problems with working copy locks

Remove stale working copy locks using SVN Cleanup. See Get SVN File Locks.

Command-line Impact Analysis: Update and analyze the dependencies
graph programmatically

In R2016b, you can access the dependency graph using the Simulink project API. You can
perform command-line project impact analysis and get required files.

For details, see Get File Dependencies.

2-19

http://www.mathworks.com/help/releases/R2016b/simulink/ug/customize-external-source-control-to-use-matlab-for-comparison-and-merge.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/check-out-files.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/automate-project-management-tasks.html#bvfudae-1

R2016b

Data Management

Model Data Editor: Configure model data properties using a table within
the Simulink Editor

The Model Data Editor allows you to inspect and edit data items (signals, data stores,
and parameters) in a list that you can sort, group, and filter. You can then configure
properties and parameters without having to locate the items in the block diagram.

While creating and debugging a model, you can configure multiple data items at once
by selecting the corresponding signals and blocks in the block diagram. Work with the
selected items in the Model Data Editor instead of opening individual dialog boxes.

Use the Model Data Editor to configure:

• Instrumentation for signals and data stores, which means you want to view and
collect the simulation values. For example, you can configure signals and data stores
to stream values to the Simulation Data Inspector.

• Design attributes such as data type, minimum and maximum value, and physical
unit. You specify these attributes to control:

• The values of numeric block parameters, such as the Gain parameter of a Gain
block.

• The interaction (interface) between components through Inport and Outport blocks
and data stores.

• Storage classes for code generation. See Model Data Editor for applying storage
classes to Inport blocks, Outport blocks, signals, and Data Store Memory blocks.

To use the Model Data Editor, in a model, select View > Model Data. See Configure
Data Properties by Using a Table, or watch this video to learn more.

Output Logging: Log data incrementally, with support for rapid
accelerator mode and variant conditions

For logging output (Configuration Parameters > Data Import/Export > Output)
using Dataset format:

• If you enable Configuration Parameters > Data Import/Export > Log Dataset
data to file, output data is logged to a MAT-file, using only a small constant amount

2-20

http://www.mathworks.com/help/releases/R2016b/rtw/release-notes.html#bvawyw3-1
http://www.mathworks.com/help/releases/R2016b/rtw/release-notes.html#bvawyw3-1
http://www.mathworks.com/help/releases/R2016b/simulink/ug/inspect-and-configure-design-attributes-of-model-data.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/inspect-and-configure-design-attributes-of-model-data.html
http://www.mathworks.com/videos/in-canvas-property-editing-120869.html

 Data Management

of memory. Before R2016b, when you accessed the output logged data, Simulink
loaded the entire data at once. Now Simulink loads that data into the workspace
incrementally. For information about logging to a MAT-file, see Log Data Using
Persistent Storage.

• In addition to the simulation modes previously supported, you can now log to memory
or to a MAT-file in rapid accelerator mode.

• For the active variant condition, Simulink creates a Dataset object with the logged
data. For inactive variant conditions, Simulink creates MATLAB timeseries with
zero samples.

Logging Inside For Each Subsystem: Log signals inside a For Each
subsystem by marking lines with antennas

Performing signal logging in For Each subsystems no longer requires adding an Outport
block outside of the subsystem for each signal that you want to log. You can mark for
signal logging nonbus signals inside For Each subsystems. Directly logging signals in a
For Each subsystem simplifies the model layout and editing. For details, see Log Signals
in For Each Subsystems.

Logged Dataset Data Analysis: Call same function for all timeseries
objects in logged Dataset data

Use the new Simulink.SimulationData.forEachTimeseries function to call a built-in or
user-defined function on each MATLAB timeseries object that you specify as input.
For example, you can use this function to resample every element of a structure of
timeseries objects obtained by logging a bus signal. You can use forEachTimeseries
with a function that returns a scalar. You can specify a timeseries object, an array of
timeseries, a structure with timeseries at leaf nodes, or an array of structures with
timeseries at leaf nodes.

Scalar expansion of initial value for data store

Before R2016b, if a data store (Data Store Memory block or Simulink.Signal object)
represented an array (nonscalar) signal, you specified the initial value of the data
store by using an array of the same dimensions. You could not use scalar expansion by
specifying a scalar initial value. For several other blocks, scalar expansion enables you to
specify the same initial value for each element of a nonscalar signal.

2-21

http://www.mathworks.com/help/releases/R2016b/simulink/ug/log-data-using-persistent-storage.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/log-data-using-persistent-storage.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/log-signals-in-for-each-subsystems.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/log-signals-in-for-each-subsystems.html
http://www.mathworks.com/help/releases/R2016b/simulink/slref/simulink.simulationdata.foreachtimeseries.html

R2016b

In R2016b, you can take advantage of scalar expansion for data stores with some
exceptions. For more information, see Specify Initial Value for Data Store.

Technique to determine whether signal has variable size

You can use the programmatic parameter CompiledPortDimensionsMode of a block
output port to determine whether the associated signal is a variable-size signal. For more
information, see Programmatically Determine Whether Signal Line Has Variable Size.

View your model configuration parameters as a group on the All
Parameters tab

Previously, in the Configuration Parameters dialog box, the All Parameters tab grouped
configuration parameters only by the category that was displayed in the first column. In
R2016b, this tab groups the parameters for each category into the same groups used on
the Commonly Used Parameters tab. Headings that describe the category and group
replace the Category column. The new Advanced Parameters group for each category
contains parameters only available on the All Parameters tab.

For more information, see Configuration Parameters Dialog Box Overview.

Enhanced error reporting and extended syntax for specifying argument
dimensions for function specifications in Legacy Code Tool

In R2016b, these features enhance the usability of the Legacy Code Tool:

• Improved error reporting — provides more specific information about argument
specification errors.

• Extended syntax for specifying argument dimensions — In addition to the size
function, you can specify function argument dimensions using expressions with:

• The numel function
• Arithmetic operators: +, –, *, /
• Integer and floating-point literals

Class to package and share breakpoint and table data for lookup tables

You can use the new classes Simulink.LookupTable and Simulink.Breakpoint to
store table and breakpoint data for lookup tables.

2-22

http://www.mathworks.com/help/releases/R2016b/simulink/ug/data-store-basics.html#bvaf3k8
http://www.mathworks.com/help/releases/R2016b/simulink/ug/variable-size-signal-basics.html#bu_dhos
http://www.mathworks.com/help/releases/R2016b/simulink/gui/configuration-parameters-dialog-box-overview.html
http://www.mathworks.com/help/releases/R2016b/matlab/ref/size.html
http://www.mathworks.com/help/releases/R2016b/matlab/ref/numel.html

 Data Management

When you share data between lookup table blocks by using variables in a workspace or
data dictionary, use this technique to improve model readability by:

• Clearly identifying the data as parts of a lookup table.
• Explicitly associating breakpoint data with table data.

For more information, see Package Shared Breakpoint and Table Data for Lookup
Tables.

Simulink Coder™ and Embedded Coder® enable you to use this technique to package
the data in the generated code for calibration according to the ASAP2 and AUTOSAR
standards. See Storage of lookup tables for calibration according to ASAP2 and
AUTOSAR standards.

These blocks have additional parameters to support the use of Simulink.LookupTable
and Simulink.Breakpoint objects:

• n-D Lookup Table
• Prelookup
• Interpolation Using Prelookup

Root Inport Mapping Tool Updates

The Root Inport Mapping Tool has the following updates:

• Select a subset of scenarios for mapping and choose a mapping mode different from
other scenarios (for more information, see Map Signal Data to Root Inports).

• If you import from a sheet whose name does not follow MATLAB variable name rules,
the Root Inport Mapping tool now uses a modified sheet name. For more information,
see Supported Microsoft Excel File Formats.

Option to disable resolution of signals and states to Simulink.Signal
objects

To configure signal or state properties such as data type, minimum and maximum
values, and storage class, you can create a Simulink.Signal object in a workspace or
data dictionary. The signal property Signal name must resolve to Simulink signal
object, the block parameter State name must resolve to Simulink signal object,

2-23

http://www.mathworks.com/help/releases/R2016b/simulink/ug/share-and-reuse-block-parameter-values-by-creating-variables.html#bvcx01z-1
http://www.mathworks.com/help/releases/R2016b/simulink/ug/share-and-reuse-block-parameter-values-by-creating-variables.html#bvcx01z-1
http://www.mathworks.com/help/releases/R2016b/rtw/release-notes.html#bvawyvq-1
http://www.mathworks.com/help/releases/R2016b/rtw/release-notes.html#bvawyvq-1
http://www.mathworks.com/help/releases/R2016b/simulink/slref/ndlookuptable.html
http://www.mathworks.com/help/releases/R2016b/simulink/slref/prelookup.html
http://www.mathworks.com/help/releases/R2016b/simulink/slref/interpolationusingprelookup.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/map-signal-data-to-root-inports.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/signal-data-for-root-inport-mapping.html#bu1knvq-6

R2016b

and the model configuration parameter Signal resolution control how the signal or
state name corresponds to the object.

In R2016b, Signal resolution has an additional option, None. When selected, this
setting prevents the signals, states, Stateflow data, and MATLAB Function block data
in the model from acquiring settings from Simulink.Signal objects. Use this setting
to reduce the dependency of the model on variables and objects in workspaces and data
dictionaries, which can improve model portability, readability, and ease of maintenance.

However, selecting None does not affect data stores that you define by creating
Simulink.Signal objects (instead of Data Store Memory blocks).

For more information about Signal resolution, see Signal resolution.

Help fixing configuration errors from Diagnostic Viewer

For some configuration error messages, the Diagnostic Viewer provides these methods for
fixing the error:

• To fix simple configuration errors, click the Fix button. The software updates
the parameter. Green or red text in the diagnostic viewer reports if the change is
successful. To see the highlighted parameter in the Configuration Parameters dialog
box before fixing, click the parameter link.

Note: If you are modifying a referenced configuration, or if the parameter change
results in a model reference incompatibility, a dialog box warning allows you to cancel
the operation.

• To fix a configuration error with a more complex solution or multiple solutions,
click the Open button next to your chosen solution. Then, update the highlighted
parameter in the Configuration Parameters dialog box.

Metadata for Logging to Persistent Storage: Simulation metadata contains
persistent storage logging settings to facilitate analysis of data from
multiple simulations

R2016a introduced the option for you to log Dataset format simulation data to
persistent storage in a MAT-file. To do so, select Configuration Parameters > Data
Import/Export > Log Dataset data to file. In R2016b, Simulink stores metadata
about logging to persistent storage. When you run multiple simulations using parallel

2-24

http://www.mathworks.com/help/releases/R2016b/simulink/gui/signal-resolution.html

 Data Management

simulations or batch processing, specify a different persistent storage MAT-file for each
simulation. Then you can use the metadata to provide context for analyzing the logged
data stored in each file.

If you use single simulation output, Simulink creates a
Simulink.SimulationMetadata object. In R2016b, this object includes in its
ModelInfo structure a new LoggingInfo structure that contains two fields:

• LoggingToFile — Indicates whether logging to persistent storage is enabled ('on'
or 'off')

• LoggingFileName — Specifies the resolved file name for the persistent storage
MAT-file (if LoggingToFile is 'on')

The MAT-file used for persistent storage contains a new SimulationMetadata variable
that stores the same simulation metadata as the Simulink.SimulationMetadata
object.

For details, see Save Logged Data from Successive Simulations.

Improved display of large arrays by Model Explorer and
Simulink.Parameter property dialog boxes

Before R2016b, for numeric MATLAB variables and Simulink.Parameter objects, the
Model Explorer Value column displayed large arrays as read-only text, such as <3x5x3
double>. The property dialog box for Simulink.Parameter objects also used this read-
only text.

In R2016b, the Model Explorer and property dialog boxes display the entire value of large
arrays. To modify the elements in the array, you can edit the displayed text.

Arrays with three or more dimensions appear as an expression that contains a call to the
reshape function. To edit the values in the array, modify the arguments of this reshape
call.

For more information, see Edit and Manage Workspace Variables Used by Models.

Configuration set in base workspace resolves variables in base
workspace

For a model that references a configuration set in the base workspace, if the
configuration set uses a variable, Simulink resolves the variable in the base workspace.

2-25

http://www.mathworks.com/help/releases/R2016b/simulink/ug/log-data-using-persistent-storage.html#bu742b7
http://www.mathworks.com/help/releases/R2016b/simulink/ug/workspace-variables-in-model-explorer.html

R2016b

Connection to Hardware

Raspberry Pi 3 Support: Run Simulink models on Raspberry Pi 3
hardware

The Simulink Support Package for Raspberry Pi Hardware now supports Raspberry Pi 3
hardware.

Watch this video to learn more.

Arduino: Improved External mode over serial communication

The external mode feature on the Simulink Support Package for Arduino Hardware is
now improved with a faster serial communication protocol. The new protocol reduces data
drop during data logging. With this change, increasing the baud rate also increases the
data logging performance.

Simulink Support Package for Samsung GALAXY Android Devices
renamed to Simulink Support Package for Android Devices

The Simulink Support Package for Samsung GALAXY® Android Devices has been
renamed to the Simulink Support Package for Android Devices.

Google Nexus Support: Run Simulink models on Google Nexus Android
devices

The Simulink Support Package for Android Devices now supports Google® Nexus Android
devices.

Watch this video to learn more.

2-26

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
http://www.mathworks.com/videos/simulink-support-for-raspberry-pi-3-and-google-nexus-devices-120873.html
http://www.mathworks.com/videos/simulink-support-for-raspberry-pi-3-and-google-nexus-devices-120873.html

 Block Enhancements

Block Enhancements

State Reader and Writer Blocks: Reset and record states during model
execution

Use the State Writer block with an Initialize Function block to set the state of a block in
response to an initialize event. Use the State Reader block with a Terminate Function
block to read the state of a block in response to a terminate event.

Blocks with state include:

• Discrete State-Space
• Discrete-Time Integrator
• Discrete Transfer Fcn
• Discrete Filter
• Delay
• Unit Delay
• S-Function (with one data type work vector declared as a discrete-state vector)

For more information, see Initialize Function, Terminate Function, Event Listener, State
Reader, and State Writer block reference.

MATLAB System Block Support for Global Data: Access Simulink data
stores from System objects using global variables

The MATLAB System block now has ability to share data between multiple MATLAB
System blocks. For more information, see Data Sharing with the MATLAB System Block.

MATLAB System block now supports enumerated data types

The MATLAB System block now supports enumerated data types.

MATLAB System Block Support for LAPACK: Generate faster standalone
code for linear algebra in a MATLAB System block

For improved simulation speed of certain linear algebra function calls in a System object
associated with a MATLAB System block, the simulation software can call LAPACK

2-27

http://www.mathworks.com/help/releases/R2016b/simulink/slref/initializefunction.html
http://www.mathworks.com/help/releases/R2016b/simulink/slref/terminatefunction.html
http://www.mathworks.com/help/releases/R2016b/simulink/slref/eventlistener.html
http://www.mathworks.com/help/releases/R2016b/simulink/slref/statereader.html
http://www.mathworks.com/help/releases/R2016b/simulink/slref/statereader.html
http://www.mathworks.com/help/releases/R2016b/simulink/slref/statewriter.html
http://www.mathworks.com/help/releases/R2016b/simulink/slref/matlabsystem.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/share-data-with-other-matlab-system-blocks.html#bvby5r0-1
http://www.mathworks.com/help/releases/R2016b/simulink/slref/matlabsystem.html
http://www.netlib.org/lapack

R2016b

functions. In R2016b, if you use Simulink Coder to generate C/C++ code from your model,
you can specify that the code generator produce LAPACK function calls. If you specify
that you want to generate LAPACK function calls, and the input arrays for the linear
algebra functions meet certain criteria, the code generator produces calls to relevant
LAPACK functions. The code generator uses the LAPACKE C interface.

LAPACK is a software library for numerical linear algebra. MATLAB uses this library
in some linear algebra functions, such as eig and svd. Simulink uses the LAPACK
library that is included with MATLAB. Simulink Coder uses the LAPACK library that
you specify. If you do not specify a LAPACK library, the code generator produces code for
the linear algebra function instead of generating a LAPACK call.

To generate LAPACK function calls and link to a specific LAPACK library, follow the
procedure in Speed Up Linear Algebra in Code Generated from a MATLAB Function
Block in the Simulink Coder documentation.

In R2016a, when you configured your model to generate LAPACK calls for standalone
code, the configuration applied to MATLAB Function blocks and Stateflow charts. In
R2016b, the configuration also applies to MATLAB System blocks. If you previously
configured your model to generate LAPACK calls for MATLAB Function blocks or
Stateflow charts, the code generator now also generates LAPACK calls for qualifying
linear algebra calls in MATLAB System blocks.

Simpler way to call System objects

Instead of using the step method to perform the operation defined by a System object,
you can call the object with arguments, as if it were a function. The step method will
continue to work. This feature improves the readability of scripts and functions that use
many different System objects.

For example, if you create a dsp.FFT System object named fft1024, then you call the
System object as a function with that name.

fft1024 = dsp.FFT('FFTLengthSource','Property', ...

 'FFTLength',1024);

fft1024(x)

The equivalent operation using the step method is:

fft1024 = dsp.FFT('FFTLengthSource','Property', ...

 'FFTLength',1024);

2-28

http://www.mathworks.com/help/releases/R2016b/rtw/ug/speed-up-linear-algebra-in-code-generated-from-the-matlab-function-block.html
http://www.mathworks.com/help/releases/R2016b/rtw/ug/speed-up-linear-algebra-in-code-generated-from-the-matlab-function-block.html

 Block Enhancements

step(fft1024,x)

When the step method has the System object as its only argument, the function
equivalent has no arguments. This function but must be called with empty parentheses.
For example, step(sysobj) and sysobj() perform equivalent operations.

System objects support for additional inputs, global variables, and
enumeration data types

• System objects in code generated using MATLAB Coder can have up to 1024 inputs.
• You can use global variables declared in System objects to exchange data with the

Data Store Memory block in Simulink. You can use these variables in generated code.
• Enumeration data types for System objects included in Simulink using the MATLAB

System block is supported. Enumerations restrict data to a finite set of data values
that inherit from int8, uint8, int16, uint16, int32, or Simulink.IntEnumType
data types, or a data type you define using Simulink.defineIntEnumType.

Prelookup and Interpolation Using Prelookup Block Bus Support: Simplify
and extend use of index and fraction signals

The Prelookup and the Interpolation Using Prelookup blocks use two signals as output
and input, respectively:

• An index of the breakpoint set element
• An interval fraction that represents the normalized position on the breakpoint

interval between the index and the next index value if the input is in range.

In R2016b, you can use a bus to combine index and fraction signals. Benefits of using a
bus for these signals include:

• Simplifies the model by tying these two related signals together.
• Creates a testpoint DpResult structure for the AUTOSAR 4.0 library.
• For the AUTOSAR 4.0 library, avoids the creation of extra copies during code

generation when the Prelookup and Interpolation Using Prelookup blocks are in
separate models.

For more information, see the Prelookup and Interpolation Using Prelookup blocks.

2-29

http://www.mathworks.com/help/releases/R2016b/simulink/slref/datastorememory.html
http://www.mathworks.com/help/releases/R2016b/simulink/slref/matlabsystem.html
http://www.mathworks.com/help/releases/R2016b/simulink/slref/matlabsystem.html
http://www.mathworks.com/help/releases/R2016b/simulink/slref/prelookup.html
http://www.mathworks.com/help/releases/R2016b/simulink/slref/interpolationusingprelookup.html

R2016b

From Spreadsheet block updates

The From Spreadsheet block now has a Range parameter. Use this parameter to select
ranges of data in your spreadsheet.

Property inspector available for Simulink blocks

Property inspector view is now available for Simulink blocks. For more information on
the property inspector, see Setting Properties and Parameters.

Manual Variant Source and Sink: Switch manually between different
variants without using conditions

Use the Manual Variant Source and Sink blocks to switch between choices at input and
output ports. You can double-click the block to toggle between the choices.

For more information, see Manual Variant Source and Manual Variant Sink.

Block Mask: Improved performance while evaluating mask parameter in
fast restart mode

Once a model is initialized, only the tunable mask parameters are evaluated thus
resulting in improved performance while evaluating the mask parameters.

Slider Range Parameter: Dynamically change the range of slider and dial
parameter

You can change the range of the slider and dial parameters on a mask using callback
code.

For more information, see the Change Slider range Dynamically model in
slexMaskParameterOptionsExample.

Some types of unit delay blocks obsoleted

These unit delay blocks were removed from the Discrete library in R2016b. In new
models, use the Delay block (with parameters set appropriately). For example, you can

2-30

http://www.mathworks.com/help/releases/R2016b/simulink/slref/fromspreadsheet.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/using-the-model-editor.html#bvbnjys-1
http://www.mathworks.com/help/releases/R2016b/simulink/slref/manualvariantsource.html
http://www.mathworks.com/help/releases/R2016b/simulink/slref/manualvariantsink.html
http://www.mathworks.com/help/releases/R2016b/simulink/slref/delay.html

 Block Enhancements

use the Resettable Delay block to replace the Unit Delay Resettable External IC block.
The Resettable Delay is the Delay block configured to reproduce the behavior of the Unit
Delay Resettable External IC block.

Existing models that contain these blocks continue to work for backward compatibility.

• Unit Delay Enabled
• Unit Delay Enabled Resettable
• Unit Delay Enabled External IC
• Unit Delay Enabled Resettable External IC
• Unit Delay External IC
• Unit Delay Resettable
• Unit Delay Resettable External IC
• Unit Delay With Preview Enabled
• Unit Delay With Preview Enabled Resettable
• Unit Delay With Preview Enabled Resettable External RV
• Unit Delay With Preview Resettable
• Unit Delay With Preview Resettable External RV

Enhanced discrete block behavior

Previously, if your model used a variable-step solver, Simulink reported an error when it
was unable to assign an appropriate sample time to the discrete blocks.

In this release, this discrepancy has been addressed so that discrete blocks always
receive an appropriate sample time. The error message no longer appears.

In addition, for the following blocks, the default sample time setting has changed from 1
to –1:

• Discrete-Time Integrator
• Zero-Order Hold
• Discrete Zero-Pole
• Discrete PID Controller
• Discrete PID Controller (2DOF)
• Discrete State-Space

2-31

R2016b

MATLAB Function Blocks

MATLAB Language Support: Use recursive functions and anonymous
functions in a MATLAB Function block

Recursive functions

In R2016b, you can use recursive functions in MATLAB code that is intended for code
generation. To generate code for recursive functions, MATLAB Coder uses compile-
time recursion or run-time recursion. With compile-time recursion, the code generator
creates multiple copies of the function in the generated code. The inputs to the copies
have different sizes or constant values. With run-time recursion, the code generator
produces recursive functions in the generated code. You can influence whether the code
generator uses compile-time or run-time recursion by modifying your MATLAB code.
You can disallow recursion or disable run-time recursion by modifying configuration
parameters. See Code Generation for Recursive Functions.

The block-level function in a MATLAB Function block cannot be a recursive function, but
it can call a recursive function.

Anonymous functions

In R2016b, you can use anonymous functions in a MATLAB Function block. For example,
a MATLAB Function block can contain the following MATLAB code that defines an
anonymous function that finds the square of a number:

sqr = @(x) x.^2;

a = sqr(5);

Anonymous functions are useful for creating a function handle to pass to a MATLAB
function that evaluates an expression over a range of values. For example, this MATLAB
code uses an anonymous function to create the input to the fzero function:

b = 2;

c = 3.5;

x = fzero(@(x) x^3 + b*x + c,0);

You cannot use anonymous functions for Simulink signals, parameters, or data store
memory. For additional limitations, see Code Generation for Anonymous Functions.

2-32

http://www.mathworks.com/help/releases/R2016b/simulink/ug/code-generation-for-recursive-functions.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/code-generation-for-anonymous-functions.html

 MATLAB Function Blocks

Variable-Size Cell Array Support: Use cell to create a variable-size cell
array in a MATLAB Function block

To create a variable-size cell array in a MATLAB Function block, you can use the cell
function. For example:

function z = mycell(n, j)

assert(n < 100);

x = cell(1,n);

for i = 1:n

 x{i} = i;

end

z = x{j};

end

See Definition of Variable-Size Cell Array by Using cell.

Error for testing equality between enumeration and character array in a
MATLAB Function block

For MATLAB code in a MATLAB Function block, an enumeration class must derive from
a built-in numerical class. In R2016b, MATLAB introduces a new behavior for testing
equality between these enumerations and a character array or cell array of character
arrays. In previous releases, MATLAB compared the enumeration and character array
character-wise. The behavior in a MATLAB Function block matched the MATLAB
behavior. In R2016b, MATLAB compares the enumeration name with the character
array. In R2016b, if a MATLAB Function block tests the equality of an enumeration and
a character array, simulation or code generation ends with this error message:

Code generation does not support comparing an enumeration to a

character array or cell array with the operators '==' and '~='

Consider this enumeration class:

classdef myColors < int8

 enumeration

 RED(1),

 GREEN(2)

 end

end

The following code compares an enumeration with the character vector 'RED':

2-33

http://www.mathworks.com/help/releases/R2016b/matlab/ref/cell.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/cell-array-restrictions-for-code-generation.html#bvczero

R2016b

mode = myColors.RED;

z = (mode == 'RED');

In previous releases, the answer in MATLAB and generated code was:

0 0 0

In R2016b, the answer in MATLAB is:

1

In R2016b, simulation or code generation ends with an error.

Compatibility Considerations

If you want the behavior of previous releases, cast the character array to a built-in
numeric class. For example, use the built-in class from which the enumeration derives.

mode = myColors.RED;

z = (mode == int8('RED'));

Incremental build for relocation of MATLAB program files on the MATLAB
path

In previous releases, for MATLAB files called by a MATLAB Function block, incremental
builds treated a relocated file on the MATLAB path as an updated file, even if the
contents or timestamp did not change. The relocation of an unchanged file called by
a MATLAB Function block caused a rebuild. In R2016b, incremental builds treat
unchanged, relocated MATLAB files on the MATLAB path as unchanged files. Relocation
of an unchanged MATLAB file called by a MATLAB Function block does not cause a
rebuild.

To specify incremental builds, set Simulation target build mode to Incremental
build.

Additional I/O Support: Generate code for fseek, ftell, fwrite

• fseek
• ftell
• fwrite

2-34

http://www.mathworks.com/help/releases/R2016b/matlab/ref/fseek.html
http://www.mathworks.com/help/releases/R2016b/matlab/ref/ftell.html
http://www.mathworks.com/help/releases/R2016b/matlab/ref/fwrite.html

 MATLAB Function Blocks

See Data and File Management in MATLAB in Functions and Objects Supported for C/C
++ Code Generation — Category List.

Code generation for additional MATLAB functions

• cplxpair
• fminbnd
• inpolygon
• isenum
• polyeig
• repelem

See Functions and Objects Supported for C/C++ Code Generation — Alphabetical List.

Code generation for additional Audio System Toolbox functions

• integratedLoudness
• octaveFilter
• weightingFilter

See Audio System Toolbox in Functions and Objects Supported for C/C++ Code
Generation — Category List.

Code generation for additional Computer Vision System Toolbox functions

• cameraPoseToExtrinsics
• extrinsicsToCameraPose

See Computer Vision System Toolbox in Functions and Objects Supported for C/C++
Code Generation — Category List.

Statistics and Machine Learning Toolbox Code Generation: Generate code
for prediction by using SVM and logistic regression models

You can generate C code that classifies new observations by using trained, binary
support vector machine (SVM) or logistic regression models, or multiclass SVM or logistic
regression via error-correcting output codes (ECOC).

2-35

http://www.mathworks.com/help/releases/R2016b/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bttrqgn
http://www.mathworks.com/help/releases/R2016b/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2016b/matlab/ref/cplxpair.html
http://www.mathworks.com/help/releases/R2016b/matlab/ref/fminbnd.html
http://www.mathworks.com/help/releases/R2016b/matlab/ref/inpolygon.html
http://www.mathworks.com/help/releases/R2016b/matlab/ref/isenum.html
http://www.mathworks.com/help/releases/R2016b/matlab/ref/polyeig.html
http://www.mathworks.com/help/releases/R2016b/matlab/ref/repelem.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/functions-supported-for-code-generation--alphabetical-list.html
http://www.mathworks.com/help/releases/R2016b/audio/ref/integratedloudness.html
http://www.mathworks.com/help/releases/R2016b/audio/ref/octavefilter-class.html
http://www.mathworks.com/help/releases/R2016b/audio/ref/weightingfilter-class.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bu7z81n
http://www.mathworks.com/help/releases/R2016b/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2016b/vision/ref/cameraposetoextrinsics.html
http://www.mathworks.com/help/releases/R2016b/vision/ref/extrinsicstocamerapose.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bsmvmqi-1
http://www.mathworks.com/help/releases/R2016b/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/functions-supported-for-code-generation--categorical-list.html

R2016b

• saveCompactModel compacts and saves the trained model to disk.
• loadCompactModel loads the compact model in a prediction function that you declare.

The prediction function can, for example, accept new observations and return labels
and scores.

• predict classifies and estimates scores for the new observations in the prediction
function.

• To classify by using binary SVM models, see predict.
• To classify by using binary logistic regression models, see predict.
• To classify by using multiclass SVM or logistic regression via ECOC, see predict.

Communications and DSP Code Generation: Generate code for additional
functions

Communications System Toolbox

• iqimbal
• comm.BasebandFileReader
• comm.BasebandFileWriter
• comm.EyeDiagram
• comm.PreambleDetector

See Communications System Toolbox in Functions and Objects Supported for C/C++
Code Generation — Category List.

DSP System Toolbox

• dsp.MovingAverage
• dsp.MovingMaximum
• dsp.MovingMinimum
• dsp.MovingRMS
• dsp.MovingStandardDeviation
• dsp.MovingVariance
• dsp.MedianFilter
• dsp.BinaryFileReader
• dsp.BinaryFileWriter

2-36

http://www.mathworks.com/help/releases/R2016b/stats/savecompactmodel.html
http://www.mathworks.com/help/releases/R2016b/stats/loadcompactmodel.html
http://www.mathworks.com/help/releases/R2016b/stats/compactclassificationsvm.predict.html
http://www.mathworks.com/help/releases/R2016b/stats/classificationlinear.predict.html
http://www.mathworks.com/help/releases/R2016b/stats/compactclassificationecoc.predict.html
http://www.mathworks.com/help/releases/R2016b/comm/ref/iqimbal.html
http://www.mathworks.com/help/releases/R2016b/comm/ref/comm.basebandfilereader-class.html
http://www.mathworks.com/help/releases/R2016b/comm/ref/comm.basebandfilewriter-class.html
http://www.mathworks.com/help/releases/R2016b/comm/ref/comm.eyediagram-class.html
http://www.mathworks.com/help/releases/R2016b/comm/ref/comm.preambledetector-class.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bsl_qz1-1
http://www.mathworks.com/help/releases/R2016b/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.movingaverage-class.html
http://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.movingmaximum-class.html
http://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.movingminimum-class.html
http://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.movingrms-class.html
http://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.movingstandarddeviation-class.html
http://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.movingvariance-class.html
http://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.medianfilter-class.html
http://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.binaryfilereader-class.html
http://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.binaryfilewriter-class.html

 MATLAB Function Blocks

• dsp.Channelizer
• dsp.ChannelSynthesizer

See DSP System Toolbox in Functions and Objects Supported for C/C++ Code Generation
— Category List.

Phased Array System Toolbox

• musicdoa
• pambgfun
• taylortaperc
• phased.GSCBeamformer
• phased.WidebandBackscatterRadarTarget
• phased.WidebandTwoRayChannel
• phased.MUSICEstimator
• phased.MUSICEstimator2D

See Phased Array System Toolbox in Functions and Objects Supported for C/C++ Code
Generation — Category List.

Conditional breakpoints for run-time debugging

To help you debug code, you can enter a MATLAB expression as a condition on a
breakpoint inside a MATLAB Function block. Simulation then pauses on that breakpoint
only when the condition is true. To set a conditional breakpoint, in the MATLAB
Function block editor, right-click beside the line of code and select Set Conditional
Breakpoint. Type the condition in the pop-up window. You can use any valid MATLAB
expression as a condition. This condition expression can include numerical values and
any data that is in scope at the breakpoint.

When you right-click a breakpoint, you can choose:

• Set/Modify the condition

• Disable breakpoint

• Clear breakpoint

You can also perform these actions from the Breakpoints menu in the MATLAB
Function block editor.

2-37

http://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.channelizer-class.html
http://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.channelsynthesizer-class.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bt7ln6w
http://www.mathworks.com/help/releases/R2016b/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2016b/phased/ref/musicdoa.html
http://www.mathworks.com/help/releases/R2016b/phased/ref/pambgfun.html
http://www.mathworks.com/help/releases/R2016b/phased/ref/taylortaperc.html
http://www.mathworks.com/help/releases/R2016b/phased/ref/phased.gscbeamformer-class.html
http://www.mathworks.com/help/releases/R2016b/phased/ref/phased.widebandbackscatterradartarget-class.html
http://www.mathworks.com/help/releases/R2016b/phased/ref/phased.widebandtworaychannel-class.html
http://www.mathworks.com/help/releases/R2016b/phased/ref/phased.musicestimator-class.html
http://www.mathworks.com/help/releases/R2016b/phased/ref/phased.musicestimator2d-class.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bt1pnss
http://www.mathworks.com/help/releases/R2016b/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2016b/simulink/ug/functions-supported-for-code-generation--categorical-list.html

R2016b

Compiler optimization parameter support for faster simulation

In R2016b, Simulink applies the setting for the configuration parameter Compiler
optimization level to MATLAB Function blocks. To speed up the simulation run-
time for your model, set the configuration parameter to Optimizations on (faster
runs). The application of compiler optimizations might consume extra time during the
build process. The default setting, Optimizations off (faster build) disables compiler
optimizations and provides the fastest build times.

Run-Time error stack in Diagnostic Viewer

In the Diagnostic Viewer, some error messages display the run-time stack information
and include the line numbers for the MATLAB code. You can trace these errors that
occur in MATLAB Function blocks to the line of code. When you select the line number,
the link opens the editor and highlights the corresponding line of code. Previously, the
error message did not provide information about the location of the error.

2-38

 Modeling Guidelines

Modeling Guidelines

Modeling guidelines for high-integrity systems

The following are new modeling guidelines to develop models and generate code for high-
integrity systems:

• hisl_0033: Usage of Lookup Table blocks
• hisl_0034: Usage of Signal Routing blocks
• hisl_0036: Configuration Parameters > Diagnostics > Saving
• hisl_0037: Configuration Parameters > Model Referencing
• hisl_0038: Configuration Parameters > Code Generation > Comments
• hisl_0039: Configuration Parameters > Code Generation > Interface
• hisl_0047: Configuration Parameters > Code Generation > Code Style
• hisl_0049: Configuration Parameters > Code Generation > Symbols

2-39

http://www.mathworks.com/help/releases/R2016b/simulink/mdl_gd/hi/lookup-table-blocks.html#bvevvl5
http://www.mathworks.com/help/releases/R2016b/simulink/mdl_gd/hi/signal-routing.html#bvevvr_
http://www.mathworks.com/help/releases/R2016b/simulink/mdl_gd/hi/diagnostics.html#bvevvxt
http://www.mathworks.com/help/releases/R2016b/simulink/mdl_gd/hi/model-referencing.html#bvevvzi
http://www.mathworks.com/help/releases/R2016b/simulink/mdl_gd/hi/code-generation.html#bvevv3f
http://www.mathworks.com/help/releases/R2016b/simulink/mdl_gd/hi/code-generation.html#bvevwaj
http://www.mathworks.com/help/releases/R2016b/simulink/mdl_gd/hi/code-generation.html#bvevwb_
http://www.mathworks.com/help/releases/R2016b/simulink/mdl_gd/hi/code-generation.html#bvevwek

R2016a
Version: 8.7

New Features

Bug Fixes

Compatibility Considerations

R2016a

Simulation Analysis and Performance

Automatic Solver Option: Set up and simulate your model more quickly
with automatically selected solver settings

Starting with R2015b, you can use the auto solver to select a solver and step size for
simulating a model. The auto solver suggests a fixed-step or variable-step solver along
with maximum step size based on the dynamics of the model. Select the auto solver in
the solver pane and accept recommended settings in the solver information dialog box.
For more information, see Use Auto Solver to Select a Solver.

Starting with R2016a, auto solver calculates the stiffness of a model. For stiff models,
auto solver selects ode15s. For more information, see Auto Solver Heuristics.

One-Click Display: Click a signal line when the simulation is running to
view the current value

When you simulate your model, you can now display the port value label for a signal by
clicking it. This option is selected by default.

For more information, see Display Value for a Specific Port or watch this video to learn
more.

Simulation Metadata Diagnostics: Understand why a simulation has
stopped in batch or individual runs

You can now use diagnostics in SimulationMetadata to understand why a simulation
stopped. The metadata object has a new property called ExecutionInfo. This property
contains information about stop events, error, and warning diagnostics. You can use the
information in ExecutionInfo to troubleshoot individual runs or each run in a batch
simulation.

See Simulink.SimulationMetadata to learn more.

Multi-Input Root Inport Mapping: Connect multiple sets of input signals to
your Simulink model for interactive or batch simulation

The Root Inport Mapping tool now supports the connection of multiple sets of input
signals to your Simulink model for interactive or batch simulation.

3-2

http://www.mathworks.com/help/releases/R2016a/simulink/ug/use-auto-solver-to-select-a-solver.html
http://www.mathworks.com/help/releases/R2016a/simulink/ug/use-auto-solver-to-select-a-solver.html#bu55z41-1
http://www.mathworks.com/help/releases/R2016a/simulink/ug/displaying-block-outputs.html#bti2_90
https://www.mathworks.com/videos/one-click-display-116248.html
http://www.mathworks.com/help/releases/R2016a/simulink/slref/simulink.simulationmetadata-class.html

 Simulation Analysis and Performance

For more information, see Map Root Inport Signal Data or watch this video to learn
more.

Simulation for Mixed Targets: Simulate system-level designs that integrate
referenced models targeting an assembly of heterogeneous embedded
devices

You can simulate a parent system model that includes referenced models configured for
heterogeneous embedded devices. For example, you can simulate a parent model that
has a referenced model Configuration Parameters > Hardware Implementation
> Device vendor parameter set to ARM Compatible and another referenced model
with that parameter set to ASIC/FPGA. Simulink models can now simulate system
engineering level models that target multiple hardware devices.

Time Out feature for Performance Advisor run time

You can now specify a run-time duration for Performance Advisor by selecting the Time
Out option. For models with long simulation times, use this option to limit the time
period for Performance Advisor runs. For more information, see Specify Runtime for
Performance Advisor.

Solver Profiler to speed up simulation performance

You can use Solver Profiler to examine solver behavior of variable step solvers and model
behavior to identify issues that can contribute to poor simulation performance. Run
Solver Profiler on models that fail to simulate or that have long simulation times. When
you pause or stop the simulation, Solver Profiler displays information gathered during
runtime including an analysis of conditions that can slow down simulation. Use this data
to examine the model simulation for solver resets, zero crossings and solver exceptions.

Solver Profiler highlights states in the model that contain solver errors. You can also
launch States Explorer from Profiler to further investigate the state plot of a model state.

For more information, see Examine Model Dynamics Using Solver Profiler.

Diagnostic Viewer performance improvement

The Diagnostic Viewer performs better and faster when handling large number of similar
warnings from Simulink operations.

3-3

http://www.mathworks.com/help/releases/R2016a/simulink/ug/overview-of-root-inport-signal-data-mapping.html
https://www.mathworks.com/videos/multi-input-root-inport-mapping-116255.html
http://www.mathworks.com/help/releases/R2016a/simulink/ug/consult-the-performance-advisor.html#bu4wwmj-1
http://www.mathworks.com/help/releases/R2016a/simulink/ug/consult-the-performance-advisor.html#bu4wwmj-1
http://www.mathworks.com/help/releases/R2016a/simulink/ug/examine-solver-behavior-using-solver-profiler.html

R2016a

Component-Based Modeling

Variant Source and Sink Blocks with Condition Propagation: Design
variant choices and automatically remove unneeded functionality based
on block connectivity

Simulink provides two blocks to visualize implementations of variant choices in a model
graphically—Variant Source and Variant Sink.

When you compile the model, Simulink determines which variant control evaluates to
true. Simulink then deactivates blocks that are not tied to the variant control being true
and visualizes the active connections.

When you specify variant conditions in models containing Variant Source and Variant
Sink blocks, Simulink propagates these conditions backward and forward from these
blocks to determine which components of the model are active during simulation.

See Variant Condition Propagation with Variant Sources and Sinks or watch this video
to learn more.

Scoping Simulink Functions: Call Simulink Function blocks within a
subsystem hierarchy

Defining the scope of Simulink functions in a Simulink model allows you to modularize
your model by limiting the visibility and access of functions. Simulink uses subsystems
to define the local scope of a function. See Define Scope of Simulink Function Blocks and
Simulink Functions in Simulink Models, or watch this video to learn more.

Simulink Units: Specify, visualize, and check consistency of units on
interfaces

Simulink now supports the specification of physical units as part of signal attributes.
This capability enables you to specify unit attributes at the boundaries of components
such as subsystems and models. To learn more, see Unit Specification in Simulink
Models or watch this video.

For a list of supported unit systems and their units, see Allowed Unit Systems.

3-4

http://www.mathworks.com/help/releases/R2016a/simulink/slref/variantsource.html
http://www.mathworks.com/help/releases/R2016a/simulink/slref/variantsink.html
http://www.mathworks.com/help/releases/R2016a/simulink/ug/variant-condition-propagation-with-variant-source-and-sink-blocks.html
https://www.mathworks.com/videos/variant-source-and-sink-blocks-with-condition-propagation-116253.html
http://www.mathworks.com/help/releases/R2016a/simulink/ug/functions-and-callers-scoping.html
http://www.mathworks.com/help/releases/R2016a/simulink/ug/functions-and-callers.html
https://www.mathworks.com/videos/scoping-simulink-functions-116251.html
http://www.mathworks.com/help/releases/R2016a/simulink/ug/units-in-simulink.html
http://www.mathworks.com/help/releases/R2016a/simulink/ug/units-in-simulink.html
https://www.mathworks.com/videos/simulink-units-116249.html

 Component-Based Modeling

Units in Simulink.Parameter and Simulink.Signal Objects

The DocUnits property is now Units. Use this property to specify units for signals.

Note: You can still continue to use the DocUnits field to access or set the property. This
capability maintains backward compatibility for existing MATLAB code, MAT-files, and
Simulink data dictionaries that use the DocUnits field.

Specifying units in MATLAB Function blocks

Simulink supports the specification of a unit property for data inputs and outputs of
MATLAB Function blocks. Specify units for input and output data by using the Unit
(e.g., m, m/s^2, N*m) parameter on the Ports and Data Manager.

During model update, Simulink checks for inconsistencies in units between input and
output data ports and the corresponding Simulink signals.

Units for logging and loading signal data

You can include units in signal data that you log or load.

Units for logging and loading are specified using Simulink.SimulationData.Unit
objects. When you log using Dataset or Timeseries format, Simulink stores the unit
information using Simulink.SimulationData.Unit objects. If you create MATLAB
timeseries data to load, you can specify Simulink.SimulationData.Unit object for
the Units property of the timeseries object.

For details, see Log Signal Data That Uses Units and Load Signal Data That Uses Units.

New units blocks

The following blocks are new:

• Unit Conversion
• Unit System Configuration

Configuration parameters

The following configuration parameters are new, available on the All Parameters tab:

3-5

http://www.mathworks.com/help/releases/R2016a/simulink/slref/simulink.simulationdata.unit-class.html
http://www.mathworks.com/help/releases/R2016a/simulink/ug/log-signal-data-that-uses-units.html
http://www.mathworks.com/help/releases/R2016a/simulink/ug/load-signal-data-that-uses-units.html
http://www.mathworks.com/help/releases/R2016a/simulink/slref/unitconversion.html
http://www.mathworks.com/help/releases/R2016a/simulink/slref/unitsystemconfiguration.html

R2016a

• Allowed unit systems
• Unitsinconsistency messages
• Allow automatic unit conversions

Model Advisor checks

The following Model Advisor checks are new for units:

• Identify undefined units in the model
• Identify unit mismatches in the model
• Identify disallowed unit systems in the model
• Identify automatic unit conversions in the model

Updated example

The Exploring the Solver Jacobian Structure of a Model has been updated with unit
specifications in all components.

Compatibility Considerations

• The DocUnits property is now Unit for Simulink.Parameter or
Simulink.Signal objects. If, in a previous release, you used the DocUnits
parameter of a Simulink.Parameter or Simulink.Signal object to contain text
that does not now comply with units specifications, simulation returns a warning
when the model simulates.

To suppress these warnings, set the configuration parameter Unitsinconsistency
messages to none. This setting suppresses all units inconsistency check warnings.

• If you have a class that derives from Simulink.Parameter, Simulink.Signal, or
Simulink.BusElement with a previously defined Unit property, Simulink returns
an error like the following:

Cannot define property 'Unit' in class 'classname' because the property

has already been defined in the superclass 'superclass'.

If you use this property to represent the physical unit of the signal, delete the Unit
property from the derived class in the R2016a or later release. Existing scripts
continue to work, unless you are assigning incorrectly formed unit expressions to the

3-6

http://www.mathworks.com/help/releases/R2016a/simulink/gui/configuration-parameters-on-all-parameters-tab.html#bu4upg7
http://www.mathworks.com/help/releases/R2016a/simulink/gui/configuration-parameters-on-all-parameters-tab.html#bu4upxs-1
http://www.mathworks.com/help/releases/R2016a/simulink/gui/configuration-parameters-on-all-parameters-tab.html#bu4upyj-1
http://www.mathworks.com/help/releases/R2016a/simulink/slref/simulink-checks_bq6d4aa-1.html#bu4thpf
http://www.mathworks.com/help/releases/R2016a/simulink/slref/simulink-checks_bq6d4aa-1.html#bu4thjs
http://www.mathworks.com/help/releases/R2016a/simulink/slref/simulink-checks_bq6d4aa-1.html#bu4thou
http://www.mathworks.com/help/releases/R2016a/simulink/slref/simulink-checks_bq6d4aa-1.html#bu4thoa
examples/exploring-the-solver-jacobian-structure-of-a-model.html
http://www.mathworks.com/help/releases/R2016a/simulink/gui/configuration-parameters-on-all-parameters-tab.html#bu4upxs-1
http://www.mathworks.com/help/releases/R2016a/simulink/gui/configuration-parameters-on-all-parameters-tab.html#bu4upxs-1

 Component-Based Modeling

Unit field. In this case, replace the use of Unit with DocUnits to continue to be able
to assign the unit expression.

Note: If you store existing data in a MAT- or .sldd file, in a release prior to R2016a,
copy the contents of the Unit property to the DocUnits first. Then, save the file in
the earlier release before loading the model in R2016a or later release.

Mask Dialogs: Create masks with flexible layout options and new control
parameters

You can use these controls from the Mask Editor dialog box to create a rich mask dialog
box:

• Collapsible panel: Expand or collapse sections in the mask dialog box.
• Dynamic mask dialogs: Change the menu options of a dependent dialog box based on

the value of the controlling parameter.
• Spinbox step size: Fine-tune and control a parameter value in the mask dialog box.
• Horizontal stretch property: Create a more flexible mask dialog box layout.
• Slider and dial parameter: Use variables to specify value in dial and slider

parameters.

For more information, see Mask Editor Overview.

Mask Images: Quickly add images to masks and while keeping the port
names visible

• Mask icons can leave port names visible.
• Mask icon preview is available in the Mask Editor.

For more information, see Mask Editor Overview.

Tracing Simulink Functions: Display connections between all Function
Callers and a Simulink Function

Visually display connections between Simulink functions and their callers with tracing
lines that connect callers to functions:

3-7

http://www.mathworks.com/help/releases/R2016a/simulink/gui/mask-editor-overview.html
http://www.mathworks.com/help/releases/R2016a/simulink/gui/mask-editor-overview.html

R2016a

• Turning on/off tracing lines — From the Display menu, select Function
Connectors.

• Direction of tracing lines — Lines connected at the bottom of a block are from a
function caller. Lines connected at the top of a block are to a Simulink function or a
subsystem containing the function.

• Navigation to functions — If a function caller is within a subsystem, you can open the
subsystem, and then click a link to the called Simulink function. If the function is at
the root level of a model, the function opens. If the function is within a subsystem, the
subsystem containing the function opens.

Signal Label Propagation for Referenced Models: Propagate signal labels
out of referenced models by default

To propagate signal labels out of referenced models more easily, in R2016a for new
models, the Configuration Parameters > Data Model Referencing > Propagate
all signal labels out of the model parameter is now enabled by default. The default
for the PropagateSignalLabelsOutOfModel parameter is now 'on'. For details, see
Propagate all signal labels out of the model.

Compatibility Considerations

If you open a model created before R2016a that has the Propagate all signal labels
out of the model parameter cleared, that setting is preserved.

The new default can require updates to scripts written before R2016a that rely on the
previous default PropagateSignalLabelsOutOfModel setting of 'off'. To have
the scripts work as expected with models created in R2016a or later, update the code to
reflect that the default for that parameter is now 'on'.

Simulink.SubSystem.convertToModelReference function for
multiple subsystem conversion: Convert multiple subsystems with one
command

You can convert multiple subsystems in a model to referenced models in one
Simulink.SubSystem.convertToModelReference command.

3-8

http://www.mathworks.com/help/releases/R2016a/simulink/gui/model-referencing-pane.html#bs89fmi-1
http://www.mathworks.com/help/releases/R2016a/simulink/slref/simulink.subsystem.converttomodelreference.html

 Component-Based Modeling

Subsystem to Model Reference Conversion: Insert subsystem wrapper to
preserve model layout

When you convert a subsystem to a referenced model, you can have the conversion
process insert a wrapper subsystem to preserve the layout of a model. The subsystem
wrapper contains the Model block from the conversion.

In the Model Reference Conversion Advisor, enable the Create a wrapper subsystem
input parameter. In the Simulink.SubSystem.convertToModelReference function,
use the CreateWrapperSubsystem name and value pair.

Model Reference Conversion Automatic Fix for Goto Blocks: Convert
subsystems with Goto blocks more easily

The Model Reference Conversion Advisor and the
Simulink.SubSystem.convertToModelReference function include additional
checks and automatic fixes to make it easier to convert subsystems with Goto blocks to
referenced models.

Virtual Bus Signals Across Model Reference Boundaries: Use virtual bus
signals as inputs or outputs of a referenced model

In R2016a, when you specify that a bus signal input or output for a referenced model is a
virtual bus, Simulink sets up the model so that, compared to previous releases, generated
code generally:

• Has fewer copies of bus signals
• Executes faster

Use the Block Parameters dialog box for an Inport or Outport block to specify virtual bus
output.

• Inport block — Clear the Output as nonvirtual bus parameter.
• Outport block — Clear the Output as nonvirtual bus in parent model parameter.

For information about the changes to the code that you generate from models, see Model
Block Virtual Buses: Interface to Model blocks by using virtual buses, reducing data
copies in the generated code.

3-9

http://www.mathworks.com/help/releases/R2016a/simulink/ug/convert-a-subsystem-to-a-referenced-model.html
http://www.mathworks.com/help/releases/R2016a/simulink/slref/simulink.subsystem.converttomodelreference.html
http://www.mathworks.com/help/releases/R2016a/rtw/release-notes.html#bu5i_gt-1
http://www.mathworks.com/help/releases/R2016a/rtw/release-notes.html#bu5i_gt-1
http://www.mathworks.com/help/releases/R2016a/rtw/release-notes.html#bu5i_gt-1

R2016a

Compatibility Considerations

The behavior of models that meet these criteria is different than it is in R2016a:

• The model was saved in a release earlier than R2016a.
• The model has referenced models with bus inputs and outputs configured to be

treated as virtual buses.

Use the Upgrade Advisor Check for virtual bus across model reference boundaries check
to avoid errors that the new behavior can trigger. Run the Analyze model hierarchy
and continue upgrade sequence check on the top-level model and then down through
the model reference hierarchy.

Bus Selector and Bus Assignment Block Signals: Display full signal path
while editing a model

You can now display full paths to bus signals for Bus Selector and Bus Assignment
blocks in the Simulink Editor, without opening the Block Parameters dialog boxes for
the blocks. Interactively viewing the full signal path can simplify the process of editing
signals with duplicate leaf names, by eliminating the need to match the block ports with
the associated signals. Also, interactively viewing the full path for the signal provides a
quick way to get context for understanding the model.

• To see the full path of a Bus Selector block output signal, hover over the output signal
label.

• To see the full path of up to the first ten output signals of a Bus Selector block, hover
over the block.

• To see the full path of up to the first ten signals in a Bus Assignment block, hover
over the block.

Multi-Input Bus-Capable Block Ports: Simulate unconnected multi-input
bus-capable block ports without error

Before R2016a, simulating a model that contains a multiport bus-capable block with an
unconnected input port causes an error if one or more of the input ports is connected
directly to either:

• A bus signal

3-10

http://www.mathworks.com/help/releases/R2016a/simulink/slref/simulink-checks_bq6d4aa-1.html#bu4yk4h-1

 Component-Based Modeling

• A Ground block

In R2016a, you can simulate under the same circumstances without error for these
multiport bus-capable blocks:

• Manual Switch
• Multiport Switch
• S-Function
• Switch
• Variant Source
• Vector Concatenate

Using a Merge block in Simplified initialization mode in still causes an error for those
situations.

Outport Blocks with Bus Output: Simulate Outport blocks with a bus
output without error

Before R2016a, simulating a model that contains an Outport block whose output data
type is specified by a bus object caused an error if either of these conditions applied:

• The Outport block has an unconnected port.
• The Outport block is connected directly to a Ground block.

In R2016a, you can simulate without error in these situations.

Function-Call Split block with multiple outputs

Before R2016a, the Function-Call Split block was a circular block with one input and two
outputs. In R2016a, this block can split an incoming function-call signal into more than
two output signals. You can also change the shape of the block.

Function-Call Split block with no input signal

Before R2016a, the Function-Call Split block had to have an input signal. In R2016a, you
can simulate your model without supplying an input signal to the Function-Call Split
block.

3-11

http://www.mathworks.com/help/releases/R2016a/simulink/slref/functioncallsplit.html
http://www.mathworks.com/help/releases/R2016a/simulink/slref/functioncallsplit.html
http://www.mathworks.com/help/releases/R2016a/simulink/slref/functioncallsplit.html

R2016a

Trigger port with inherited periodic function-call signal

Before R2016a, if the Trigger block of a triggered subsystem had the Trigger type
parameter set to function-call and Sample time type set to periodic, you could
not set Sample time to -1. In R2016a, you can specify a sample time of -1.

Standalone code generation for models with asynchronous function-call
inputs

Before R2016a, you had to build a top model from which to reference asynchronous
function-call inputs. In R2016a, models with asynchronous function-call inputs support
code generation on standalone models. You can now build these models as is.

Additional component parameters saved with
Simulink.ConfigSet.saveAs

In R2016a, the Simulink.ConfigSet.saveAs function saves all enabled parameters
in the base configuration set. In addition, the function saves enabled parameters for the
following components:

• Coder Target
• HDL Coder
• Polyspace®

• SimEvents®

• Simscape™
• Simulink Coverage
• Simulink Design Verifier™
• Simulink PLC Coder™
• Target Hardware Resources

3-12

http://www.mathworks.com/help/releases/R2016a/simulink/slref/trigger.html

 Project and File Management

Project and File Management

Start Page: Get started or resume work faster by accessing templates,
recent models, and featured examples

The Simulink start page helps you get started faster by offering model and project
templates and examples. You can use common design patterns or learn about new
features.

If you want to pick up where you left off, the start page shows a list of recent models, and
opens the project automatically if your selected model is part of a project. You can now
also open recent models from the Simulink Editor or from the Library Browser.

For details, see Create Models and Open Existing Models, or watch this video to learn
more.

Compatibility Considerations

In previous releases, you could not access a list of recent models, and you could not find
model and project templates and examples in the same place. The Simulink Template
Gallery and the project template browser are merged into the start page.

Functionality What Happens When You Use
This Functionality?

Compatibility Considerations

simulink Opens the start page simulink no longer opens the
Library Browser, but instead
opens the start page.

To open the Library Browser,
use slLibraryBrowser
instead, or click the Library
Browser button in the

Editor: .
Opens the start page The Simulink button in

MATLAB no longer opens
the Library Browser, but
instead opens the start page.

3-13

http://www.mathworks.com/help/releases/R2016a/simulink/ug/create-models-and-open-existing-models.html
https://www.mathworks.com/videos/simulink-start-page-116254.html
http://www.mathworks.com/help/releases/R2016a/simulink/slref/simulink.html
http://www.mathworks.com/help/releases/R2016a/simulink/slref/sllibrarybrowser.html

R2016a

Functionality What Happens When You Use
This Functionality?

Compatibility Considerations

Simulink button on the
MATLAB Home tab.
Creating a new model,
chart, library, or project
from the MATLAB Home
tab New menu, from the
Editor, from the Library
Browser, or from Simulink
Project.

Opens the start page Choose a template from
the start page. The start
page shows an appropriate
filtered list of models, charts,
libraries, or projects.

To recreate the previous
workflow:

• In the start page, select
Blank Model, Blank
Library, Blank Project, or
Chart, (or press Ctrl+N
for a blank model),

• In the Editor or Library
Browser, select a new
Blank Model (or press
Ctrl+N).

To create a project using
source control or from an
archive, use the start page
options.

3-14

 Project and File Management

Functionality What Happens When You Use
This Functionality?

Compatibility Considerations

Use model templates. Find all your templates on
the start page.

The menu item From
Template is no longer in the
Editor or Library Browser.
Instead, in the Simulink
Editor, select File > New
> Model and select your
template in the start page.
In the Library Browser,
click the New Model button
arrow and select Model. The
Simulink Template Gallery
is now merged into the start
page.

Use project templates. Find all your templates on
the start page.

Project templates are no
longer in the MATLAB Home
tab New menu or in the
Create Project dialog box.
Instead, open the start page
from MATLAB, or from the
Editor by selecting File >
New > Project, and select
your template in the start
page.

Simulink project templates
created in R2014a or earlier
(.zip files)

You cannot browse to legacy
templates in the start page

Upgrade legacy templates
to .sltx files using
Simulink.exportToTemplate.

Automatic Renaming: Update all references in a project when you
rename models, libraries, or MATLAB files

In a Simulink project, when you rename, delete, or remove a file, the project checks for
impact in other project files. You can find and fix impacts such as changed library links,
model references, and model callbacks. This tooling can help you avoid refactoring pain
tracking down other affected files. Automatic renaming is helpful in preventing errors
that result if you change names or paths manually and overlook or mistype one or more
instances of the name.

3-15

http://www.mathworks.com/help/releases/R2016a/simulink/slref/simulink.exporttotemplate.html

R2016a

Automatic renaming helps you refactor MATLAB code. Simulink project dependency
analysis now finds dependencies on MATLAB code in packaged functions, classes, and
superclasses. You can view the dependencies in the Impact graph and if you refactor the
files, automatic renaming prompts you. For example, when renaming a class, the project
offers to automatically update all classes that inherit from it. If you rename a .m or .mlx
file, the project offers to automatically update any files and callbacks that call it.

For details, see Automatic Updates When Renaming, Deleting, or Removing Files.

Three-Way Model Merge: Resolve conflicts between revisions and
ancestor models using Simulink projects

In a Simulink project under source control, if your changes in a model conflict with
another user, you can open the Three-Way Model Merge tool to resolve the conflicts. You
can examine your local file compared to the conflicting revision and the base ancestor file,
and decide which changes to keep. You can resolve the conflict and submit your changes.
Three-Way Model Merge requires Simulink Report Generator™.

For details, see Resolve Conflicts.

Template API: Programmatically create models and projects from custom
templates

In R2016a, you can programmatically create models and projects from templates, and
create custom templates. Model and project templates are starting points to apply
common modeling approaches. They help you reuse settings and block configurations
and share knowledge. Use model and project templates to apply best practices and take
advantage of previous modeling solutions.

To use templates programmatically, see Simulink.createFromTemplate,
Simulink.findTemplates, and Simulink.exportToTemplate.

Export function: Export to previous version using
Simulink.exportToVersion

In R2016a you can use a new function, Simulink.exportToVersion, to export a model so
that you can open it in a previous version of Simulink. The new function makes it easier
to distinguish between exporting to a previous version and saving with a different name.

3-16

http://www.mathworks.com/help/releases/R2016a/simulink/ug/move-rename-copy-or-delete-project-files.html#bu5myet
http://www.mathworks.com/help/releases/R2016a/simulink/ug/resolve-conflicts.html
http://www.mathworks.com/help/releases/R2016a/simulink/slref/simulink.createfromtemplate.html
http://www.mathworks.com/help/releases/R2016a/simulink/slref/simulink.findtemplates.html
http://www.mathworks.com/help/releases/R2016a/simulink/slref/simulink.exporttotemplate.html
http://www.mathworks.com/help/releases/R2016a/simulink/slref/simulink.exporttoversion.html

 Project and File Management

In previous releases you could use save_system with the 'ExportToVersion' option.
This option will also continue to work.

Dirty Model Management: Identify, save, or discard unsaved changes in
project models

In a Simulink project, you can check for unsaved changes in project models, and decide
whether to save or discard changes. In the previous release, you had to close the project
to see warnings about unsaved changes. Now you can manage unsaved changes before
closing the project.

For details, see Manage Shadowed and Dirty Model Files.

Source Control API: Programmatically get modified files and revision
information

In R2016a, you can programmatically get source control status information about
Simulink project files. Use simulinkproject to get a project object, then you can get
a list of modified files in the project. You can get the local status of a file (modified,
unmodified, not under source control) and the revision if available.

For details, see listModifiedFiles.

Source Control Notifications: List changed files on update (SVN); find out
if your branch is behind the origin (Git)

In R2016a, Simulink Project provides more notifications to help you with source control
operations. With SVN, when you update a project from the repository, you see a list of all
changed files in a dialog box. With Git, when you fetch from a remote repository, you can
see if your current branch is behind or ahead of the remote tracking branch (the origin).

For details, see Update Revisions with SVN and Fetch and Merge.

SVN Externals: Include files in projects from other repositories or
repository locations

Use SVN externals to get files into your Simulink project from another repository or from
a different part of the same repository. Right-click a project folder and select Manage

3-17

http://www.mathworks.com/help/releases/R2016a/simulink/ug/manage-shadowed-and-dirty-model-files.html
http://www.mathworks.com/help/releases/R2016a/simulink/slref/listmodifiedfiles.html
http://www.mathworks.com/help/releases/R2016a/simulink/ug/update-revisions-of-project-files.html#bt8c428
http://www.mathworks.com/help/releases/R2016a/simulink/ug/push-and-fetch-files-with-git.html#buagyo2-1

R2016a

SVN Externals. The project provides a dialog to help you browse, specify and validate
the externals definitions. After you define the externals setting on a folder, other project
users can get the same files included in their project.

For details, see Manage SVN Externals.

Custom Shortcut Icons: Personalize frequent task buttons on the toolstrip

In R2016a, you can specify an icon to use for your shortcut buttons on the Project
Shortcuts tab. Icons such as “build” can aid other project users to recognize frequent
tasks. For details, see Customize Shortcut Icons.

Simplified Configuration Parameters: Configure model more easily using
streamlined category panes

In the Configuration Parameters dialog box, streamlined category panes display only
configuration parameters that you are most likely to use when configuring your model.

The category panes, previously referred to as the Category view, are now available on the
Commonly Used Parameters tab. The All Parameters tab, previously referred to as
the List view, provides the complete list of parameters in the model configuration set.

Compatibility Considerations

Following are the configuration parameters that have moved to the All Parameters tab
or moved to a different pane.

3-18

http://www.mathworks.com/help/releases/R2016a/simulink/ug/set-up-svn-source-control.html#bu62oes-1
http://www.mathworks.com/help/releases/R2016a/simulink/ug/create-shortcuts-to-frequent-tasks.html#bu7q1d2-1

 Project and File Management

Note: Parameters that are removed from a pane are still available for configuration on
the All Parameters tab. To locate a parameter on this tab, use either the search box or
the Category filter.

Data Import/Export Pane

The Enable live streaming of selected signal to Simulation Data Inspector
parameter is moved to the All Parameters tab.

The Save simulation output as single object parameter is now called Single
simulation output

The following parameters are available by clicking Additional Parameters at the
bottom of the pane:

• Limit data points to last
• Decimation
• Output options
• Refine factor

Diagnostics Pane

The following parameter is moved to the All Parameters tab:

• Solver data inconsistency

Diagnostics > Data Validity Pane

The following parameters are moved to the All Parameters tab:

• Array bounds exceeded
• Model verification block enabling
• Check preactivation output of execution context
• Check runtime output of execution context
• Check undefined subsystem initial output
• Detect multiple driving blocks executing at the same time step
• Underspecified initialization detection

3-19

R2016a

Diagnostics > Saving Pane

The pane is removed and its parameters are moved to the All Parameters tab:

• Block diagram contains disabled library links
• Block diagram contains parameterized library links

Diagnostics > Solver Pane

The following parameters are moved to the Diagnostics > Sample Time pane:

• Sample hit time adjusting
• Unspecified inheritability of sample time

The following parameter is moved to the Diagnostics > Compatibility pane:

• SimState object from earlier release

Optimization Pane

The following parameters are moved to the All Parameters tab:

• Remove code from floating-point to integer conversions with saturation that
maps NaN to zero

• Compiler optimization level
• Verbose accelerator builds
• Implement logic signals as Boolean data (vs. double)
• Block reduction
• Conditional input branch execution
• Use memset to initialize floats and doubles to 0.0

Optimization > Signals and Parameters Pane

The following parameters are moved to the All Parameters tab:

• Signal storage reuse
• Enable local block outputs
• Reuse local block outputs
• Optimize global data access

3-20

 Project and File Management

• Reuse global block outputs
• Eliminate superfluous local variables (Expression folding)
• Simplify array indexing

Simulation Target Pane

The following parameters are moved to the All Parameters tab:

• Echo expressions without semicolons
• Simulation target build mode
• Ensure responsiveness
• Generate typedefs for imported bus and enumeration types
• Ensure memory integrity

Simulation Target > Custom Code Pane

The pane is removed and its parameters are moved to the Simulation Target pane:

• Header file
• Initialize function
• Source file
• Terminate function
• Parse custom code symbols
• Include directories
• Libraries
• Source files
• Defines

Simulation Target > Symbols Pane

The pane is removed and its parameter is moved to the Simulation Target pane:

• Reserved names

3-21

R2016a

Simulink Editor

Single-Selection Actions: Access commonly used editing actions when
clicking a block or signal line

When you select a block or a signal line in a Simulink model, a cue appears that lets you
select a common action to perform. When you move your cursor over the cue, an action
bar appears. Click the action you want to perform.

• For blocks, you can comment or uncomment the block or hide or display the block
name using this cue.

• For signal lines, you can autoroute the line or enable or disable signal logging.

The figure shows how to use the cue to comment out a block.

Watch this video to learn more.

Multiple-Selection Cue: Selecting multiple blocks in the Simulink Editor
shows new cue

When you select multiple blocks in your model, the Simulink Editor now displays a
smaller cue, as shown in the figure. Move your mouse over the cue to display the action
bar of common commands.

3-22

https://www.mathworks.com/videos/single-selection-actions-116252.html

 Simulink Editor

Single Click for Quick Insert: Click block name once to insert block from
list

If you know the name of the block you want to add to a model, you can click in the model
where you want to add the block and start typing the block name. The blocks that match
appear in a list. In previous releases, you double-clicked the block name to insert it in
the model. In R2016a, you click the block name once to insert it. For an example, see Add
More Blocks.

Interactive Library Unlocking: Click lock symbol in custom libraries to
unlock

Clicking the lock symbol in a custom library now unlocks the library so you can edit it.
For information about library locks, see Create a Custom Library.

Key Parameter Preference: Turn off parameter prompt during block creationWhen you
add a block to a model, a prompt appears so that you can enter a key parameter. To
prevent this prompt from appearing, you can set a preference. In your model, select
FileSimulink Preferences. In the Editor Preferences pane, clear the Edit key parameter
when adding new blocks check box.

Improved block search usability

The Quick Block Insert search displays a description of the library making it easier to
recognize the block in the Library Browser.

3-23

http://www.mathworks.com/help/releases/R2016a/simulink/ug/build-a-simple-model.html#butipw1-1
http://www.mathworks.com/help/releases/R2016a/simulink/ug/build-a-simple-model.html#butipw1-1
http://www.mathworks.com/help/releases/R2016a/simulink/ug/creating-block-libraries.html

R2016a

Data Management

Signal and State Logging to File: Log data directly to a MAT-file for long
simulations

When logging large amounts of data that can cause memory issues for a long simulation,
use the new Configuration Parameters > Data Import/Export > Log Dataset data
to file parameter. With this feature enabled, Simulink stores in a MAT-file data that is
in Dataset format for these kinds of logging:

• Signal logging
• States
• Final states
• Output
• Data stores

Alternatively, you can enable this feature using the LoggingToFile and
LoggingFileName name-value pairs with either the sim command or set_param
command.

Using a Simulink.SimlationData.DatasetRef object to access signal logging and
states logging data loads data into the model workspace incrementally. Loading and
accessing data for other kinds of logging loads all of the data into memory at once.

For details, see Log Data Using Persistent Storage.

Preserve symbolic constants in propagated signal dimensions

Previously, Simulink treated signal and parameter dimension specifications as numeric
constants. In R2016a, you can use a Simulink.Parameter object as a symbol in a
MATLAB expression to represent a dimension value. During simulation, Simulink
propagates dimension symbols throughout the model and preserves these symbols in the
propagated signal dimensions.

For example, Inport blocks In1 and In2 have symbolic constant dimension specifications.
In the Signals Attribute tab in the Source Block Parameters dialog box for In1, the
Port dimension parameter has the Simulink.Parameter A, which has a value of 2.
In the Signals Attribute tab in the Source Block Parameters dialog box for In2, the

3-24

http://www.mathworks.com/help/releases/R2016a/simulink/ug/log-data-using-persistent-storage.html

 Data Management

Port dimension parameter has the Simulink.Parameter B, which has a value of 3.
When you simulate the model, you see the symbolic constants and their values propagate
throughout the model.

Embedded Coder preserves these dimension symbols and expressions in the generated
code. If you use Embedded Coder, you can compile the same generated code into multiple
applications of different sizes. For more information on generating code with symbolic
constants, see Compile-Time Dimensions: Generate compiler directives (#define) for
implementing signal dimensions and Implement Dimension Variants for Array Sizes in
Generated Code.

Dataset Format for Signal Logging: Log signals in format used for other
logging

When you open a model in R2016a, signal logging uses the Dataset format for the
logged data. The SignalLoggingSaveFormat parameter is set to Dataset.

Dataset is the default format for logging output and state information. Using the same
format for signal logging data as well as other logged data simplifies writing scripts to
process that data.

Compatibility Considerations

The ModelDataLogs class is supported for backwards compatibility. Starting in R2016a,
you cannot log data in the ModelDataLogs format. In R2016a or later, when you open
a model from an earlier release that had used ModelDataLogs format, the model is
converted to use Dataset format.

3-25

http://www.mathworks.com/help/releases/R2016a/ecoder/release-notes.html#bu4ipor
http://www.mathworks.com/help/releases/R2016a/ecoder/release-notes.html#bu4ipor
http://www.mathworks.com/help/releases/R2016a/ecoder/ug/implement-dimension-variants-for-array-sizes-in-generated-code.html
http://www.mathworks.com/help/releases/R2016a/ecoder/ug/implement-dimension-variants-for-array-sizes-in-generated-code.html

R2016a

You can convert signal logging data from ModelDataLogs to Dataset format. For more
information, see Convert Logged Data to Dataset Format.

If you have legacy code that uses the Simulink.ModelDataLogs API, you can
encounter situations that require updates to your code or model. See Migrate Scripts
That Use ModelDataLogs API.

Unlimited Number of Data Points for Logging by Default: Log all data
points by default

To simplify logging time, output, and state data, the default behavior is to have no limit
on the number of data points logged during a simulation. In R2016a, by default the
Configuration Parameters > All Parameters > Limit data points is now cleared.

Compatibility Considerations

The changed default can require updates to scripts written before R2016a that rely on
the previous default of limiting the logged data points to 1000 or to a specified number of
data points and that use:

• The new_system function to create an empty Simulink system
• Simulink.ConfigSet to access the model configuration set

Root Inport Mapping Tool Updates

The Root Inport Mapping Tool has the following updates:

• New interface
• Support for Excel® spreadsheets on all platforms
• Support for the linking in of multiple scenario files at the same time

For more information, see Map Root Inport Signal Data

Function to convert MAT-file contents to
Simulink.SimulationData.Dataset object

New convertToSlDataset function converts the contents of a MAT-file that contains
Simulink inputs to a Simulink.SimulationData.Dataset object.

3-26

http://www.mathworks.com/help/releases/R2016a/simulink/ug/convert-logs-to-dataset-format.html
http://www.mathworks.com/help/releases/R2016a/simulink/ug/enabling-signal-logging-for-a-model.html#bsxb84m
http://www.mathworks.com/help/releases/R2016a/simulink/ug/enabling-signal-logging-for-a-model.html#bsxb84m
http://www.mathworks.com/help/releases/R2016a/simulink/ug/overview-of-root-inport-signal-data-mapping.html
http://www.mathworks.com/help/releases/R2016a/simulink/slref/converttosldataset.html

 Data Management

Functions to identify and close data dictionaries

Some commands and functions, such as
Simulink.data.dictionary.cleanupWorkerCache, cannot
operate when data dictionaries are open. Use the new function
Simulink.data.dictionary.getOpenDictionaryPaths to identify open data dictionaries.

You can use the new function Simulink.data.dictionary.closeAll to close all connections
to all open data dictionaries. However, it is a best practice to close each individual
connection.

Navigation to variables from additional block dialog boxes

Beginning in R2015a, you can navigate to or create variables directly from blocks in
the base Simulink libraries such as Discrete and Continuous. You can navigate to or
create the variables in a workspace or data dictionary, or navigate to mask parameters,
by right-clicking the variable name in the block dialog box. For more information, see
Manage Variables from Block Parameter.

In R2016a, the blocks in these additional libraries allow you to navigate to variables from
block dialog boxes:

• Communications System Toolbox
• Communications System Toolbox Support Package for RTL-SDR Radio,

except for the Radio address parameter in the RTL-SDR Receiver block
• Communications System Toolbox Support Package for Xilinx FPGA-Based

Radio
• SimEvents, except for the Port number parameter in the Conn legacy block
• Simulink Coder
• Simulink Control Design
• Simulink Design Optimization
• Simulink Design Verifier
• Simulink Extras
• Simulink Support Package for Apple iOS Devices
• Simulink Support Package for BealgeBoard Hardware
• Simulink Support Package for LEGO MINDSTORMS EV3 Hardware
• Simulink Support Package for LEGO MINDSTORMS NXT Hardware

3-27

http://www.mathworks.com/help/releases/R2016a/simulink/slref/simulink.data.dictionary.getopendictionarypaths.html
http://www.mathworks.com/help/releases/R2016a/simulink/slref/simulink.data.dictionary.closeall.html
http://www.mathworks.com/help/releases/R2016a/simulink/ug/manage-variables-from-block-parameter-dialog.html

R2016a

• Simulink Support Package for Raspberry Pi Hardware
• Simulink Support Package for Samsung GALAXY Android Devices
• System Identification Toolbox

Functionality Being Removed or Changed

Functionality Result Use Instead Compatibility
Considerations

The programmatic
parameter
DefaultDataPackage,
which corresponds
to the Package
option on the Data
Management
Defaults pane in the
Simulink Preferences
dialog box.

Warning. For example,
this command generates a
warning:

set_param(0,...

'DefaultDataPackage',...

'mpt')

To select default
classes for
creating signal
and parameter
objects, on the
Model Explorer
toolbar, click the
arrows next to the
Simulink Signal
and Simulink
Parameter buttons.

To select a default
package when you
apply a custom
storage class in a
Signal Properties
dialog box or in a
block dialog box,
use the new drop-
down list Signal
object class.

In the Data Object
Wizard, click
Change Class to
select a class for
each data object
that the wizard
proposes.

In your scripts,
remove references
to the programmatic
parameter
DefaultDataPackage.

3-28

 Connection to Hardware

Connection to Hardware

Hardware implementation parameters enabled by default

In R2016a, the Enable hardware specification button is removed from the
Configuration Parameters > Hardware Implementation pane. By default, the
parameters on the pane are enabled.

Mac Support for LEGO EV3: Run Simulink models on LEGO EV3
hardware from a Mac

You can use the Simulink Support Package for LEGO MINDSTORMS EV3 Hardware on
the Apple Mac OS X platform.

3-29

R2016a

Block Enhancements

From Spreadsheet Block Updates

The From Spreadsheet has the following changes:

• The block has moved from the Simulink Extras/Additional Sources sublibrary to the
Simulink Sources sublibrary.

• The block now supports Rapid Accelerator mode on all platforms.

System object enhancements to MATLAB System block

To implement these classes and methods for defining your own System objects, add them
to your object's class definition file.

• Fixed-point data tab — The showFiSettingsImpl method adds a Data Types tab to
the MATLAB System block dialog box. This tab includes options for fixed-point data
settings.

• Model reference discrete sample time inheritance — The
allowModelReferenceDiscreteSampleTimeInheritanceImpl method lets you specify
whether a System object in a referenced model can inherit the sample time of the
parent model. If your object uses discrete sample time in its algorithm, you set this
method to true to allow inheritance.

Unit Delay block does not accept rate transitions

In R2016a, if the Unit Delay block input and output signals are at different rates, the
block produces an error. For the rate transitions workflow, use a Rate Transition block.

Matrix Interpolation Block for Multidimensional Lookup Table Data

The Matrix Interpolation block performs interpolation (or extrapolation) on a
multidimensional table, where each data point can be a matrix. The block resides in the
Simulink Extras library.

Enhanced System Object Development with MATLAB Editor

Create System objects in the MATLAB Editor using code insertion and visualization
options.

3-30

http://www.mathworks.com/help/releases/R2016a/simulink/slref/fromspreadsheet.html
http://www.mathworks.com/help/releases/R2016a/simulink/slref/matlab.system.showfisettingsimpl.html
http://www.mathworks.com/help/releases/R2016a/simulink/slref/matlabsystem.html
http://www.mathworks.com/help/releases/R2016a/simulink/slref/matlab.system.allowmodelreferencediscretesampletimeinheritanceimpl.html
http://www.mathworks.com/help/releases/R2016a/simulink/slref/unitdelay.html
http://www.mathworks.com/help/releases/R2016a/simulink/slref/ratetransition.html
http://www.mathworks.com/help/releases/R2016a/simulink/ref_extras/matrixinterpolation.html

 Block Enhancements

• Define your System object with options to insert properties, methods, states, inputs,
and outputs.

• View and navigate the System object code with the Analyzer.
• Develop System block and preview block dialog box interactively (with Simulink only).

These coding tools are available when you open an existing System object or create a new
System object with New > System object.

Scope Block and Signal Viewer Enhancements

• Added ability to select signals for individual displays. This change removes an
incapability from previous releases. See Connect Signals to Floating Scope Block or
Scope Viewer

• Expand scope window layout from 4 x 4 to 16 x 16 displays. See Select Number of
Displays and Layout.

3-31

http://www.mathworks.com/help/releases/R2016a/simulink/ug/signal-viewer-tasks.html#brhlmlp
http://www.mathworks.com/help/releases/R2016a/simulink/ug/signal-viewer-tasks.html#brhlmlp
http://www.mathworks.com/help/releases/R2016a/simulink/ug/scope-block-tasks.html#bu582c0-1
http://www.mathworks.com/help/releases/R2016a/simulink/ug/scope-block-tasks.html#bu582c0-1

R2016a

MATLAB Function Blocks

Cell Array Support: Use additional cell array features in a MATLAB
Function block

In R2016a, support for cell arrays in a MATLAB Function block includes:

Use of {end + 1} to grow a cell array

You can write code such as X{end + 1} to grow a cell array X. For example:

X = {1 2};

X(end + 1} = 'a';

When you use {end + 1} to grow a cell array, follow the restrictions described in
Growing a Cell Array by Using {end + 1}.

Value and handle objects in cell arrays

Cell arrays can contain value and handle objects. You can use a cell array of objects as a
workaround for the limitation that code generation does not support objects in matrices
or structures.

Function handles in cell arrays

Cell arrays can contain function handles.

Non-Power-of-Two FFT Support: Generate code for fast Fourier
transforms for non-power-of-two transform lengths

In previous releases, code generation required a power of two transform length for fft,
fft2, fftn, ifft, ifft2, and ifftn. In R2016a, code generation allows a non-power-of-two
length for these functions.

Faster Standalone Code for Linear Algebra: Generate code that takes
advantage of your own target-specific LAPACK library

To improve the simulation speed of MATLAB Function block algorithms that call certain
linear algebra functions, the simulation software can call LAPACK functions. In R2016a,

3-32

http://www.mathworks.com/help/releases/R2016a/simulink/ug/cell-array-restrictions-for-code-generation.html#bu6ihbl
http://www.mathworks.com/help/releases/R2016a/matlab/ref/fft.html
http://www.mathworks.com/help/releases/R2016a/matlab/ref/fft2.html
http://www.mathworks.com/help/releases/R2016a/matlab/ref/fftn.html
http://www.mathworks.com/help/releases/R2016a/matlab/ref/ifft.html
http://www.mathworks.com/help/releases/R2016a/matlab/ref/ifft2.html
http://www.mathworks.com/help/releases/R2016a/matlab/ref/ifftn.html
http://www.netlib.org/lapack

 MATLAB Function Blocks

if you use Simulink Coder to generate C/C++ code for these algorithms, you can specify
that the code generator produce LAPACK function calls. If you specify that you want to
generate LAPACK function calls, and the input arrays for the linear algebra functions
meet certain criteria, the code generator produces calls to relevant LAPACK functions.
The code generator uses the LAPACKE C interface.

LAPACK is a software library for numerical linear algebra. MATLAB uses this library
in some linear algebra functions, such as eig and svd. Simulink uses the LAPACK
library that is included with MATLAB. Simulink Coder uses the LAPACK library that
you specify. If you do not specify a LAPACK library, the code generator produces code for
the linear algebra function instead of generating a LAPACK call.

See LAPACK Calls for Linear Algebra in a MATLAB Function Block.

To specify that you want to generate LAPACK function calls and link to a specific
LAPACK library, see Speed Up Linear Algebra in Code Generated from a MATLAB
Function Block in the Simulink Coder documentation.

Concatenation of variable-size, empty arrays

In R2016a, the MATLAB Function block treatment of an empty array in a concatenation
more closely matches the MATLAB treatment.

For concatenation of arrays, MATLAB and the MATLAB Function block require that
corresponding dimensions across component arrays have the same size, except for the
dimension that grows. For horizontal concatenation, the second dimension grows. For
vertical concatenation, the first dimension grows.

In MATLAB, when a component array is empty, the sizes of the nongrowing dimensions
do not matter because MATLAB ignores empty arrays in a concatenation. In previous
releases, the MATLAB Function block required that the sizes of nongrowing dimensions
of an variable-size, empty array matched the sizes of the corresponding dimensions in the
other component arrays. A dimension size mismatch resulted in a simulation error.

In R2016a, for most cases of empty arrays in concatenation, the MATLAB Function block
behavior matches MATLAB behavior. In some cases, if the MATLAB Function block does
not recognize the empty array and treats it as a variable-size array, a dimension size
mismatch results in a simulation error.

Consider the function myconcat that concatenates two arrays A and B.

3-33

http://www.mathworks.com/help/releases/R2016a/simulink/ug/lapack-calls-for-linear-algebra-in-a-matlab-function-block.html
http://www.mathworks.com/help/releases/R2016a/rtw/ug/speed-up-linear-algebra-in-code-generated-from-the-matlab-function-block.html
http://www.mathworks.com/help/releases/R2016a/rtw/ug/speed-up-linear-algebra-in-code-generated-from-the-matlab-function-block.html

R2016a

function D = myconcat(n, B)

%#codegen

assert(n <= 5);

A = zeros(n,3);

C = [A, B];

D = numel(C);

end

The size of A is :5-by-3. The first dimension has a variable size with an upper bound of
5. The second dimension has fixed size 3. Suppose that B is a 5-by-5 array. If n is 0, A
is an empty array whose size is 0-by-3. In previous releases, myconcat in a MATLAB
Function block resulted in a size mismatch error because the size of dimension 1 of A
did not match the size of dimension 1 of B. In R2016a, in a MATLAB Function block, the
output from myconcat is 25. This output is the same as the output from myconcat in
MATLAB.

Compatibility Considerations

When the result of the concatenation is assigned to a variable that must be a fixed-
size variable, support for a variable-size, empty array in a concatenation introduces an
incompatibility.

In previous releases, it was possible that a concatenation that included a variable-
size array produced a fixed-size array because concatenation rules were stricter in the
MATLAB Function block than in MATLAB. In R2016a, a concatenation that includes a
variable-size array produces a variable-size array. If the result of the concatenation is
assigned to a variable that must be a fixed-size variable, an error occurs.

Consider the function myconcat1 that concatenates two arrays X and Y.

function c = myconcat1(n, Y)

%#codegen

assert(n <= 2);

X = zeros(n,2);

Z.f = [X Y];

c = numel(Z.f);

X has size :2-by-2. The first dimension has a variable size with an upper bound of 2. The
second dimension has fixed size 2. Suppose that Y is a 2-by-4 array. In previous releases,
the MATLAB Function block determined that the result of [X Y] had fixed size 2-by-6.
In R2016a, the result of [X Y] has a size of 2-by-:6. The first dimension has a fixed size
of 2 and the second dimension has a variable size with an upper bound of 6. This size

3-34

 MATLAB Function Blocks

accommodates an empty and nonempty X. If X is empty, the size of the result is 2-by-4. If
X is nonempty, the size of the result is 2-by-6.

Consider the function myconcat2.

function c = myconcat2(n, Y)

%#codegen

assert(n <= 2);

X = zeros(n,2);

Z.f = ones(2,6);

myfcn(Z);

Z.f = [X Y];

c = numel(Z.f);

function myfcn(~)

myconcat2 assigns a 2-by-6 value to Z.f. The size of Z.f is fixed at 2-by-6 because Z is
passed to myfcn. The result of the concatenation [X Y] is variable-size. The assignment
Z.f = [X Y] results in an error because the left side of the assignment is fixed-size and
the right side is variable-size.

To work around this incompatibility, you can use coder.varsize to declare that Z.f is
variable-size.

function c = myconcat2(n, Y)

%#codegen

assert(n <= 2);

coder.varsize('Z.f');

X = zeros(n,2);

Z.f = ones(2,6);

myfcn(Z);

Z.f = [X Y];

c = numel(Z.f);

function myfcn(~)

xcorr Code Generation: Generate faster code for xcorr with long input
vectors

For long input vectors, code generation for xcorr now uses a frequency-domain calculation
instead of a time-domain calculation. The resulting code can be faster than in previous
releases.

3-35

http://www.mathworks.com/help/releases/R2016a/signal/ref/xcorr.html

R2016a

To use the xcorr function, you must have the Signal Processing Toolbox™ software.

More keyboard shortcuts for the MATLAB Function report

In R2016a, you can use keyboard shortcuts to perform the following actions in a
MATLAB Function report.

Action Default Keyboard Shortcut

Zoom in Ctrl+Plus
Zoom out Ctrl+Minus
Evaluate selected MATLAB code F9
Open help for selected MATLAB code F1
Open selected MATLAB code Ctrl+D
Step backward through files that you
opened in the code pane

Alt+Left

Step forward through files that you opened
in the code pane

Alt+Right

Refresh F5
Find Ctrl+F

Your MATLAB preferences define the keyboard shortcuts associated with these actions.
You can also select these actions from a context menu. To open the context menu, right-
click anywhere in the report.

3-36

 MATLAB Function Blocks

Code generation for Audio System Toolbox functions and System objects

See Audio System Toolbox in Functions and Objects Supported for C and C++ Code
Generation — Category List.

Code generation for additional Computer Vision System Toolbox functions
and objects

See C code generation support in the Computer Vision System Toolbox™ release notes.

Image Processing Toolbox Code Generation: Generate code for additional
functions

See C-code generation support for more than 20 functions, including regionprops,
watershed, bweuler, bwlabel, bwperim, and multithresh using MATLAB Coder in the
Image Processing Toolbox™ release notes.

3-37

http://www.mathworks.com/help/releases/R2016a/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bu7z81n
http://www.mathworks.com/help/releases/R2016a/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2016a/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2016a/vision/release-notes.html#bu1fkvt-15
http://www.mathworks.com/help/releases/R2016a/images/release-notes.html#bumt6p2-5
http://www.mathworks.com/help/releases/R2016a/images/release-notes.html#bumt6p2-5

R2016a

Code generation for additional MATLAB functions

Specialized Math in MATLAB

• airy
• besseli
• besselj

See Specialized Math in MATLAB in Functions and Objects Supported for C and C++
Code Generation — Category List.

Trigonometry in MATLAB

• deg2rad
• rad2deg

See Trigonometry in MATLAB in Functions and Objects Supported for C and C++ Code
Generation — Category List.

Interpolation and Computational Geometry in MATLAB

• interpn

See Interpolation and Computational Geometry in MATLAB in Functions and Objects
Supported for C and C++ Code Generation — Category List.

Changes to code generation support for MATLAB functions

• Code generation now supports the nanflag option for sum, mean, median, min,
max, cov, var, and std.

• Code generation for ismember no longer requires that the second input be sorted.

See Functions and Objects Supported for C and C++ Code Generation — Alphabetical
List.

Code generation for additional Communications System Toolbox functions

• convenc
• dpskdemod

3-38

http://www.mathworks.com/help/releases/R2016a/matlab/ref/airy.html
http://www.mathworks.com/help/releases/R2016a/matlab/ref/besseli.html
http://www.mathworks.com/help/releases/R2016a/matlab/ref/besselj.html
http://www.mathworks.com/help/releases/R2016a/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bq3r5jn-1
http://www.mathworks.com/help/releases/R2016a/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2016a/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2016a/matlab/ref/deg2rad.html
http://www.mathworks.com/help/releases/R2016a/matlab/ref/rad2deg.html
http://www.mathworks.com/help/releases/R2016a/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bq1h2z8-33
http://www.mathworks.com/help/releases/R2016a/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2016a/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2016a/matlab/ref/interpn.html
http://www.mathworks.com/help/releases/R2016a/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bq1h2z8-22
http://www.mathworks.com/help/releases/R2016a/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2016a/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2016a/matlab/ref/sum.html
http://www.mathworks.com/help/releases/R2016a/matlab/ref/mean.html
http://www.mathworks.com/help/releases/R2016a/matlab/ref/median.html
http://www.mathworks.com/help/releases/R2016a/matlab/ref/min.html
http://www.mathworks.com/help/releases/R2016a/matlab/ref/max.html
http://www.mathworks.com/help/releases/R2016a/matlab/ref/cov.html
http://www.mathworks.com/help/releases/R2016a/matlab/ref/var.html
http://www.mathworks.com/help/releases/R2016a/matlab/ref/std.html
http://www.mathworks.com/help/releases/R2016a/matlab/ref/ismember.html
http://www.mathworks.com/help/releases/R2016a/simulink/ug/functions-supported-for-code-generation--alphabetical-list.html
http://www.mathworks.com/help/releases/R2016a/simulink/ug/functions-supported-for-code-generation--alphabetical-list.html
http://www.mathworks.com/help/releases/R2016a/comm/ref/convenc.html
http://www.mathworks.com/help/releases/R2016a/comm/ref/dpskdemod.html

 MATLAB Function Blocks

• dpskmod
• qammod
• qamdemod
• vitdec

See Communications System Toolbox in Functions and Objects Supported for C and C++
Code Generation — Category List.

Code generation for additional DSP System Toolbox

• audioDeviceWriter
• dsp.Differentiator
• designMultirateFIR
• dsp.SubbandAnalysisFilter
• dsp.SubbandSynthesisFilter

DSP System Toolbox in Functions and Objects Supported for C and C++ Code Generation
— Category List.

Code generation for additional Phased Array System Toolbox functions

• fogpl
• gaspl
• rainpl
• phased.BackscatterRadarTarget
• phased.LOSChannel
• phased.WidebandLOSChannel

See Phased Array System Toolbox in Functions and Objects Supported for C and C++
Code Generation — Category List.

Code generation for WLAN System Toolbox functions and System objects

See WLAN System Toolbox in Functions and Objects Supported for C and C++ Code
Generation — Category List

3-39

http://www.mathworks.com/help/releases/R2016a/comm/ref/dpskmod.html
http://www.mathworks.com/help/releases/R2016a/comm/ref/qammod.html
http://www.mathworks.com/help/releases/R2016a/comm/ref/qamdemod.html
http://www.mathworks.com/help/releases/R2016a/comm/ref/vitdec.html
http://www.mathworks.com/help/releases/R2016a/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bsl_qz1-1
http://www.mathworks.com/help/releases/R2016a/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2016a/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2016a/dsp/ref/audiodevicewriter-class.html
http://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.differentiator-class.html
http://www.mathworks.com/help/releases/R2016a/dsp/ref/designmultiratefir.html
http://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.subbandanalysisfilter-class.html
http://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.subbandsynthesisfilter-class.html
http://www.mathworks.com/help/releases/R2016a/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bt7ln6w
http://www.mathworks.com/help/releases/R2016a/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2016a/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2016a/phased/ref/fogpl.html
http://www.mathworks.com/help/releases/R2016a/phased/ref/gaspl.html
http://www.mathworks.com/help/releases/R2016a/phased/ref/rainpl.html
http://www.mathworks.com/help/releases/R2016a/phased/ref/phased.backscatterradartarget-class.html
http://www.mathworks.com/help/releases/R2016a/phased/ref/phased.loschannel-class.html
http://www.mathworks.com/help/releases/R2016a/phased/ref/phased.widebandloschannel-class.html
http://www.mathworks.com/help/releases/R2016a/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bt1pnss
http://www.mathworks.com/help/releases/R2016a/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2016a/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2016a/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bu5xf_f
http://www.mathworks.com/help/releases/R2016a/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2016a/simulink/ug/functions-supported-for-code-generation--categorical-list.html

R2016a

Units for MATLAB Function blocks

Simulink supports the specification of a unit property for data inputs and outputs of
MATLAB Function blocks. Specify units for input and output data by using the Unit
(e.g., m, m/s^2, N*m) parameter on the Ports and Data Manager.

During model update, Simulink checks for inconsistencies in units between input and
output data ports and the corresponding Simulink signals.

In/Out Arguments: Specify same variable name for in/out arguments

In a MATLAB Function block, you can specify the same name for input and output
arguments. For example, the block supports this code.

function y = fcn(y)

%#codegen

y = y + 1;

The corresponding input and output ports on the block have the same name, y.

UserData parameter available for storing values

Use set_param() and get_param() to store and retrieve values in the UserData
parameter for MATLAB Function blocks.

3-40

 Modeling Guidelines

Modeling Guidelines

High-Integrity Systems: Model object, file, and folder names

When you develop models for high-integrity systems, use the following guidelines for
model object, file, and folder names:

• hisl_0031: File and folder names
• hisl_0032: Model object names

If you have a Simulink Verification and Validation™ license, you can use the following
Model Advisor standards checks to verify compliance with high-integrity guideline
hisl_0032: Model object names. The checks are available in the applicable Model Advisor
By Task folder.

• DO-178C/DO-331: Check model object names
• IEC 61508, EN 50128 and ISO® 26262: Check model object names

3-41

http://www.mathworks.com/help/releases/R2016a/simulink/mdl_gd/hi/modeling-style_bu3c920-2.html#bu3db1h-1
http://www.mathworks.com/help/releases/R2016a/simulink/mdl_gd/hi/modeling-style_bu3c920-2.html#bu3dafn-1
http://www.mathworks.com/help/releases/R2016a/slvnv/ref/do-178c-checks.html#bu3da_z-1
http://www.mathworks.com/help/releases/R2016a/slvnv/ref/iec-61508-and-iso-26262-checks.html#bu3dbjn-1

R2016a

Model Advisor

Additional functionality for Model Advisor check that checks for usage of
partial structure

In R2016a, the Model Advisor check Check for partial structure
parameter usage with bus signals has a new name, Check structure
parameter usage with bus signals. The check uses a new programmatic ID,
mathworks.design.MismatchedBusParams.

If you have Simulink Coder software, before you generate code from a model, use this
check to discover potential inefficient typecasts due to mismatched data types. For
information about the changes to the check functionality, see Model Advisor check for
data type mismatches between bus elements and structure fields.

Compatibility Considerations

If you have scripts that programmatically run this check, consider
using the new programmatic ID. The old programmatic ID is
mathworks.design.PartialBusParams. For example, your scripts might use this
command:

SysResultObjArray = ModelAdvisor.run({'myModel'},{'mathworks.design.PartialBusParams'})

Your scripts continue to work with the old ID. The new ID is
mathworks.design.MismatchedBusParams.

In a future release, the check will appear in the By Product > Simulink Coder folder
instead of the By Product > Simulink folder. You will need Simulink Coder software to
run the check. If you do not have Simulink Coder software, consider removing the check
from your scripts in R2016a.

3-42

http://www.mathworks.com/help/releases/R2016a/rtw/release-notes.html#bu4ujaz-1
http://www.mathworks.com/help/releases/R2016a/rtw/release-notes.html#bu4ujaz-1

 S-Functions

S-Functions

ssSetSolverNeedsReset updates

The ssSetSolverNeedsReset macro is now needed for both fixed-step and variable-step
ODE solvers. Simulink now monitors S-function continuous state changes without solver
resets in normal and accelerated simulation modes for fixed-step simulation.

To improve performance, consider updating existing S-functions that correctly use
ssSetSolverNeedsReset with the new macro, ssSetSkipContStatesConsistencyCheck.

ssSetSkipContStatesConsistencyCheck

The ssSetSkipContStatesConsistencyCheck macro is a new macro that lets you skip
continuous state consistency checks. Consider using this macro for an S-function with
continuous states that either does not change the state vector or changes it only in
conjunction with ssSetSolverNeedsReset.

3-43

http://www.mathworks.com/help/releases/R2016a/simulink/sfg/sssetsolverneedsreset.html
http://www.mathworks.com/help/releases/R2016a/simulink/sfg/sssetskipcontstatesconsistencycheck.html
http://www.mathworks.com/help/releases/R2016a/simulink/sfg/sssetskipcontstatesconsistencycheck.html
http://www.mathworks.com/help/releases/R2016a/simulink/sfg/sssetsolverneedsreset.html

R2015aSP1
Version: 8.5.1

Bug Fixes

R2015b
Version: 8.6

New Features

Bug Fixes

Compatibility Considerations

R2015b

Simulink Editor

Signal Line Healing: Click once to repair broken signal lines after deleting
blocks

You can connect signal lines that broke when you deleted a block. When you delete a
block that was connected to one input signal and one output signal, a prompt appears in
its place. Click the prompt to connect the broken input and output signal lines to each
other.

Multilingual Names and Comments: Use any language to write block
names, signal names, and MATLAB Function comments

You can use Unicode characters for most textual content in Simulink, including names of
blocks and signals as well as comments in MATLAB scripts or functions.

Programmatic removal of mask dialog box controls and mask
parameters

You can use the following functions to remove dialog control elements and parameters
from the mask dialog box:

5-2

 Simulink Editor

• removeParameter: Removes a parameter from mask dialog box. For more
information, see Simulink.Mask.removeParameter.

• removeDialogcontrol: Removes a dialog control element from mask dialog box. For
more information, see Simulink.Mask.removeDialogControl.

Alternative view of library contents in Library Browser

You can now view blocks in the Simulink Library Browser in alphabetical order or in
the order specified by the developer of the library. Right-click the blocks pane in the
Library Browser, and select Sort in library model order. The blocks appear in the
order specified by the developer of the library in the underlying library model. This
setting takes effect on all your libraries and stays in effect from session to session.

To return to alphabetical order, right-click and select Sort in alphabetical order. For
more information, see Reorder Blocks in Libraries.

Prompt to set key parameter when dragging a block from the Library
Browser

When you drag a block from the Library Browser into your model, you are prompted to
enter the key parameter. Setting the value this way lets you set the parameter without
opening the dialog box.

Printing to Postscript and EPS file formats

You now cannot print Simulink models or Stateflow charts to postscript and EPS file
formats.

Compatibility Considerations

If you want to print models or charts to a file, specify a .pdf extension for the output file.

Programmatic addition of areas and images in models

You can now add labeled areas and images to your Simulink model programmatically.
For more information, see add_block.

5-3

http://www.mathworks.com/help/releases/R2015b/simulink/slref/simulink.mask.removeparameter.html
http://www.mathworks.com/help/releases/R2015b/simulink/slref/simulink.mask.removedialogcontrol.html
http://www.mathworks.com/help/releases/R2015b/simulink/ug/customizing-the-library-browser.html#buyqchv
http://www.mathworks.com/help/releases/R2015b/simulink/slref/add_block.html

R2015b

Redesigned interface for Model Dependency Viewer

The Model Dependency Viewer tool has a new interface to view a model’s dependencies
on models and libraries. For more information, see Model Dependency Viewer.

Visual cue for undo and redo of block parameter value changes

After you undo or redo block parameter changes, a visual cue appears that shows the
current values of the affected parameters. For example:

1 In the vdp model, for an Integrator block, change the Initial condition parameter
value to 2 and select the Wrap state check box. Apply the changes.

2 Select Edit > Undo Parameter Changes. The cue shows that the parameters
returned to their original values.

3 Select Edit > Redo Parameter Changes. The cue shows the restored parameters
values.

5-4

http://www.mathworks.com/help/releases/R2015b/simulink/ug/model-dependency-viewer.html

 Simulink Editor

For more information on Undo and Redo, see Interactive Model Building.

5-5

http://www.mathworks.com/help/releases/R2015b/simulink/ug/using-the-model-editor.html#butbtux

R2015b

Simulation Analysis and Performance

New Interface for Scopes: View and debug signals with cursors and
measurements

The Simulink Scope and Floating Scope blocks with the Scope Viewer were significantly
upgraded. Simulink upgrades the scope blocks in a model that you previously created
and saved when you reopen it.

Major new features include simulation data analysis and debugging tools directly within
the Scope window, and tools similar to those of modern hardware bench-top oscilloscopes.
See Scope block reference for a list of features.

Note: The Signal Statistics, Bilevel Measurements, and Peak Finder panels require a
DSP System Toolbox or Simscape license.

Features from the previous scope were retained with some differences.

Capability Previous Simulink Scope block New Simulink Scope block

Number of input
ports

No limit Maximum 96

Number of axes
(displays)

No limit Maximum 16

Mapping axes
(displays) to input
ports

Number of axes equal to the
number of input ports.

Number of displays and number
of input ports are independent.

Ports are assigned to displays
sequentially, one port per
display. If there are more ports
than displays, the extra signals
are plotted in the last display.

Mapping axes
(displays) to signals

For the Floating Scope, select
a specific axis and assign
signals to axis using the Signal
Selector.

For the Floating Scope, the
number of displays and the
number of attached signals are
independent.

5-6

http://www.mathworks.com/help/releases/R2015b/simulink/slref/scope.html

 Simulation Analysis and Performance

Capability Previous Simulink Scope block New Simulink Scope block

Signals are assigned to displays
sequentially, one signal per
display. If there are more signals
than displays, the extra signals
are plotted in the last display.

Default logging
format

Structure with time Dataset

Default line color Color order yellow, magenta,
cyan, red, green, light gray.

Color order yellow, blue, orange,
green, purple, cyan, magenta.

Model Explorer
Search

Search by Property Name,
by Property Value, or by
Dialog Prompt.

Not possible to search property
names or values.

Block and dialog
parameters

The command
get_param(<scope block

path>,'ObjectParameters')

returns a list of block
parameters and dialog
parameters.

The command
get_param(<scope block

path>,'ObjectParameters')

returns a list of block
parameters. There are no dialog
parameters.

The command
get_param(<scope block

path>,'DialogParameters')

returns empty.
Last buffer Data
Archiving

Last data buffer in external
mode data archiving saved to
the workspace by default

Data saved to workspace when
Write Intermediate Results to
WorkSpace is selected

Decimation and
Sample Time

Sample time and decimation
settings are not independent.

Sample time and decimation
settings are independent.

5-7

R2015b

Capability Previous Simulink Scope block New Simulink Scope block

Select signals for
Floating Scope

Several Signal Selectors opened
at once.

Selection from the model
diagram and from the Signal
Selector poorly coordinated.

Only one Signal Selector opened
at a time.

Selecting signals with the Signal
Selector disables selection from
the model diagram.

To select signals from the model
diagram, unlock the Floating
Scope, and then select signals.

Convert Scope block
to Floating Scope
block and back

Convert Scope to Floating
Scope using a Floating Scope
check box parameter.

Conversion not available.

Get a Scope or a Floating Scope
from the sinks library.

Floating property Possible to convert a Scope
block to a Floating Scope
block using the command
set_param([model '/

Scope'], 'Floating',

'on')

The Floating property is read-
only and set to 'off'. Not
possible to convert a Scope to a
Floating Scope.

Hybrid signal plot
style

Continuous elements of
a hybrid signal (mux of
continuous and discrete)
plotted using a line and discrete
elements plotted using stairs.

Signal elements of a hybrid
signal plotted using lines.
Behavior is consistent with a
Dataset logging timeseries plot
of hybrid signals.

Programmatic access
and scripting

Use set_param and
get_param.

Changing Scope dialog
parameters using set_param
can put the Scope in an
undefined state.

Use Scope Configuration object.

For backward compatibility,
set_param and get_param
continue to support dialog
parameters in the old Scope.
However, these parameters are
hidden.

Legend location Location of a legend on a scope
serialized and restored when a
model is re-opened.

Placed legends anywhere within
a scope, but the location of the
legend is not serialized.

5-8

 Simulation Analysis and Performance

Capability Previous Simulink Scope block New Simulink Scope block

Zoom Mode ZoomMode serialized and
restored when a model is re-
opened.

ZoomMode not serialized and
not restored when a model is re-
opened.

Scope blocks in
conditionally
executed subsystems

Scope data is not acquired
when subsystem is not enabled.

Lines drawn connecting gaps in
plotted data.

Scope data is not acquired when
subsystem is not enabled.

Gaps in plotted data visible.

Fast Restart API: Programmatically run consecutive simulations more
quickly

You can now enable fast restart from the command line using set_param. See Get
Started with Fast Restart for more details.

You can also simulate a model in fast restart using sim and cvsim commands.

Previously, you could not use cvsim or signalbuilder with fast restart. In R2015b,
you can now use these commands.

Auto solver that chooses solver for a model

Starting with R2015b, you can use the auto solver to select a solver and step size for
simulating a model. The auto solver suggests a fixed-step or variable-step solver along
with maximum step size based on the dynamics of the model. Select the auto solver in
the solver pane and accept recommended settings in the solver information dialog box.
For more information, see Use Auto Solver to Select a Solver.

Tunability of struct parameters in rapid accelerator mode

You can now tune struct parameters when you simulate a model in rapid accelerator
mode. Previously you tuned struct parameters only in normal and accelerator modes.
You do not need to regenerate the rapid accelerator code when you tune struct
parameters.

5-9

http://www.mathworks.com/help/releases/R2015b/simulink/ug/get-started-with-fast-restart.html
http://www.mathworks.com/help/releases/R2015b/simulink/ug/get-started-with-fast-restart.html
http://www.mathworks.com/help/releases/R2015b/simulink/ug/use-auto-solver-to-select-a-solver.html

R2015b

Port value labels for nonvirtual buses and bus signals

To monitor bus signal data during simulation, you can use port value labels for
nonvirtual buses. You can also display port labels for individual signals in a bus through
a new interface. For more information, see Display Value for a Specific Port.

Visualization of inserted rate transition blocks

When Simulink performs automatic rate transition, you can now see the rate transition
blocks that Simulink inserts in your model. You can also set the Initial Condition of
these blocks and change block parameters for rate transfers. For more information, see
Visualize Inserted Rate Transition Blocks.

Common format for saving states, output, and final states data and other
logging and loading techniques

The default for the Configuration Parameters > Data Import/Export > Format> >
parameter is now Dataset, which:

• Simplifies postprocessing of logged data
• Makes it easier to take advantage of features that require Dataset format

Extended support for root Inport loading using Dataset format in rapid
accelerator

Loading root Inport data using Dataset format in rapid accelerator mode is now
supported for underspecified and complex buses and arrays of buses.

Free MinGW-w64 compiler for running simulations on 64-bit Windows®

You can now use the MinGW-w64 compiler from TDM-GCC to run simulations on 64-
bit Windows® hosts. You can run simulations in Accelerator and Rapid Accelerator
modes, build model reference simulation targets and S-functions, and simulate MATLAB
Function blocks. To download and install the compiler, see Install MinGW-w64 Compiler.

5-10

http://www.mathworks.com/help/releases/R2015b/simulink/ug/displaying-block-outputs.html#bti2_90
http://www.mathworks.com/help/releases/R2015b/simulink/ug/resolving-rate-transitions.html#buv_tr8-1
http://www.mathworks.com/help/releases/R2015b/matlab/matlab_external/install-mingw-support-package.html

 Component-Based Modeling

Component-Based Modeling

More flexible configuration of Application lifespan (days) parameter in a
model reference hierarchy for simulation

The Configuration Parameters > Optimization > Application lifespan (days)
parameter can now be different for a parent and child model in a model reference
hierarchy during simulation. This flexibility can be useful during model reference
development. However, for code generation, the settings for this parameter must be
consistent throughout a model reference hierarchy.

Model Advisor checks for simplified initialization mode

The Model Advisor Check consistency of initialization parameters for Outport
and Merge blocks check has been replaced with four new checks. These checks help
to migrate your model to simplified initialization mode. For more information, see the
Model Advisor task Migrating to Simplified Initialization Mode Overview.

Changes to export-function models

Export-function models include these changes for R2015b.

Configuration Parameter for Scheduling Checks

A new model referencing configuration parameter, Enable strict scheduling checks
for referenced export-function models, lets you enable or skip checks on scheduling
order and sample-time consistency. This check applies to referenced export-function
models. For more information, see Enable strict scheduling checks for referenced export-
function models.

Triggered Sample Time for Function-Call Subsystems

You can now specify a discrete sample time for the function-call root-level Inport block for
function-call subsystems whose trigger block has Sample time type set to Triggered.
For more information, see Sample Time for Function-Call Subsystems in Export-
Function Models.

Execution Order of Function-Call Root-Level Inport Blocks

The algorithm to determine block execution order has changed. Root-level function-call
Inport block execution order is now determined first by priority, then by sample time,

5-11

http://www.mathworks.com/help/releases/R2015b/simulink/slref/simulink-checks_bq6d4aa-1.html#buv5ne_-1
http://www.mathworks.com/help/releases/R2015b/simulink/gui/model-referencing-pane.html#buzcs4d
http://www.mathworks.com/help/releases/R2015b/simulink/gui/model-referencing-pane.html#buzcs4d
http://www.mathworks.com/help/releases/R2015b/simulink/ug/export-function-models.html#bt2ro4b
http://www.mathworks.com/help/releases/R2015b/simulink/ug/export-function-models.html#bt2ro4b

R2015b

and then by the port number. For more information, see Execution Order for Function-
Call Root-level Inport Blocks.

Compatibility Considerations

The algorithm to determine block execution order has changed. Specify low priority on
the blocks you want to execute first.

Saving of list view parameters with Simulink.ConfigSet.saveAs

Previously, Simulink.ConfigSet.saveAs saved a configuration set that included the
enabled parameters that appear in the category view in the Configuration Parameters
dialog box. In R2015b, the method also saves the enabled parameters that appear only in
the list view.

5-12

http://www.mathworks.com/help/releases/R2015b/simulink/ug/export-function-models.html#bt174_1
http://www.mathworks.com/help/releases/R2015b/simulink/ug/export-function-models.html#bt174_1

 Project and File Management

Project and File Management

Referenced Projects: Create reusable components for large modeling
projects

You can organize large projects into components through the use of referenced projects.
Componentization facilitates reuse, modular development, unit testing, and independent
release of components. In R2015b, you can:

• Add new components to your project by referencing other projects.
• Use shortcuts to view and run files that belong to the referenced project.
• Extract a folder from a project and convert the folder into a referenced project.

For more information, see:

• Componentization of Large Projects
• Airframe Project Reference Example

Configuration Parameters List View: List, edit, and search all
configuration parameters within your model

The Configuration Parameters list view provides a complete list of parameters in the
model configuration set. The list view includes parameters available in the category view
and parameters previously available only from the command line. To use the list view,
click the List button at the top of the Configuration Parameters dialog box.

You can use the list view to:

• Search for specific parameters or filter parameters by category.

5-13

http://www.mathworks.com/help/releases/R2015b/simulink/componentization-of-large-projects.html

R2015b

• Sort parameters.
• Edit parameter values.
• View parameter dependencies.
• Get parameter names for use in scripts.

For more information on the Configuration Parameters dialog box and the list view, see
Configuration Parameters Dialog Box Overview.

Project Creation from a Model: Quickly organize your model and all
dependent files

Put your model and all dependent files into a Simulink project in three clicks. If your
model has supporting files, then a project makes it easier to manage. If you have more
than one model, version, or user, a project can help you. The project provides these
advantages:

• Automate setup and shutdown tasks such as loading data and running scripts.
• Manage any required files (not just models and libraries, but all your supporting files,

such as data, images, scripts, functions, data dictionaries, requirements docs, etc.).
• Manage your path when you open and close the project.
• Visualize all file dependencies.
• Use source control tools and compare versions.

In a Simulink model, select File > Simulink Project > Create Project from Model.

5-14

http://www.mathworks.com/help/releases/R2015b/simulink/gui/configuration-parameters-dialog-box-overview.html

 Project and File Management

Simulink runs dependency analysis on your model to identify required files and suggest a
project root location that contains all dependencies.

For details, see Create a Project from a Model.

Faster, Improved Dependency Analysis: Analyze projects several times
faster, identify referenced project files, and view library blocks

Dependency analysis of typical projects is faster, and includes new capabilities:

• Identify dependencies on files in referenced projects.
• Trace library link dependencies to view library block names in the graph.

Analyzing all project files is now the default, which helps to ensure that you explore all
dependencies.

The dependency analysis workflow is simplified so that you can perform all operations
in the graph view using one toolstrip tab. The Simulink Project tree now has a single
Dependency Analysis view instead of three views separating file selection for analysis,
the table of results, and the Impact graph. The table view of files is still available as an
option, but you can perform all operations from the Impact graph view.

For details, see Perform Impact Analysis.

Management of shadowed and dirty files

Simulink Project now helps you to avoid working on the wrong files by detecting
shadowed files when you open a project. If loaded model files shadow your project model
files, you are prompted to inspect or close them. To avoid working on the wrong files,
close the files that shadow your project files before continuing to open your project. You
can choose to show or close individual files, or close all files that shadow with one click.
Previously, you only saw a warning in the command window when you opened a model
that another loaded file shadowed.

Simulink Project also now helps you to manage unsaved changes when closing a project.
When you close a project, it closes any project models that are open, unless they are dirty.
If model files have unsaved changes, then a prompt appears . You can see all dirty files,
grouped by project if you have referenced projects. To avoid losing work, you can save or
discard changes by file, by project, or globally.

For details, see Manage Shadowed and Dirty Model Files.

5-15

http://www.mathworks.com/help/releases/R2015b/simulink/ug/create-a-project-from-a-model.html
http://www.mathworks.com/help/releases/R2015b/simulink/ug/perform-impact-analysis.html
http://www.mathworks.com/help/releases/R2015b/simulink/ug/manage-shadowed-and-dirty-model-files.html

R2015b

Comparison of any pair of file revisions

In a Simulink project under source control, you can now select any pair of revisions to
compare. This ability is useful for investigating differences in older changelists. You can
now sort revisions by column headers in the Compare to Revision dialog box (e.g., by
date, revision number, or author). The Compare to Revision dialog box has an improved
layout, placing revision columns above the details pane, making it much easier to read.

Previously you could compare a revision only with your local file, making it more difficult
to investigate older changes. You could not compare between other revisions, and you
could not sort revisions.

For details, see Compare Revisions.

Updated power window example

The Power Window Control Project example has been updated to exercise more of the
logic in the power window controller. The example uses the From Spreadsheet block
to provide multiple sets of inputs to the controller. For more information, see Power
Window.

Case-sensitive model and library names

Function Element
Name

What Happens When
You Use This Function
Element

Use This Instead Compatibility
Considerations

Case-insensitive
model or library
name

Simulink uses
the closest case-
insensitive match,
and warns

Specify exact case Case-insensitive
matching will be
removed in a future
release.

Warning for Model Info Configuration Manager

Functionality What Happens
When You Use This
Functionality

Use This Instead Compatibility
Considerations

Model Info block
Configuration
Manager

When a model's
configuration
manager is active,

For a more flexible
interface to source
control tools, use

The Configuration
Manager will be
removed in a future

5-16

http://www.mathworks.com/help/releases/R2015b/simulink/ug/compare-revisions.html
http://www.mathworks.com/help/releases/R2015b/simulink/ug/power-window-example-case-study.html
http://www.mathworks.com/help/releases/R2015b/simulink/ug/power-window-example-case-study.html

 Project and File Management

Functionality What Happens
When You Use This
Functionality

Use This Instead Compatibility
Considerations

you see a new
warning when
loading or saving the
model, or when you
access the Model Info
block.

Simulink Project
instead of the Model
Info block.

release. For help,
see the Upgrade
Advisor checks:
Identify Model Info
blocks that use
the Configuration
Manager and
Identify Model
Info blocks that
can interact with
external source
control tools.

5-17

http://www.mathworks.com/help/releases/R2015b/simulink/slref/simulink-checks_bq6d4aa-1.html#buwxipa-1
http://www.mathworks.com/help/releases/R2015b/simulink/slref/simulink-checks_bq6d4aa-1.html#buwxipa-1
http://www.mathworks.com/help/releases/R2015b/simulink/slref/simulink-checks_bq6d4aa-1.html#buwxipa-1
http://www.mathworks.com/help/releases/R2015b/simulink/slref/simulink-checks_bq6d4aa-1.html#buwxipa-1
http://www.mathworks.com/help/releases/R2015b/simulink/slref/simulink-checks_bq6d4aa-1.html#buwxix0-1
http://www.mathworks.com/help/releases/R2015b/simulink/slref/simulink-checks_bq6d4aa-1.html#buwxix0-1
http://www.mathworks.com/help/releases/R2015b/simulink/slref/simulink-checks_bq6d4aa-1.html#buwxix0-1
http://www.mathworks.com/help/releases/R2015b/simulink/slref/simulink-checks_bq6d4aa-1.html#buwxix0-1
http://www.mathworks.com/help/releases/R2015b/simulink/slref/simulink-checks_bq6d4aa-1.html#buwxix0-1

R2015b

Data Management

Interval Logging: Specify start and stop time intervals to log only the data
you need

You can use the new Configuration Parameters > Data Import/Export > Logging
intervals parameter to specify an interval for logging data for:

• Time
• States
• Output
• Signal logging
• The To Workspace block
• The To File block

Limiting logging to specified intervals:

• Allow you to view specific logged data without changing the model or adding
complexity to a model

• Simplifies analysis of logged data
• Reduces simulation time
• Reduces memory consumption

Always-On Tunability: Tune all block parameters and workspace
variables during a simulation

Prior to R2015b, you selected Configuration Parameters > Optimization > Signals
and Parameters > Inline parameters to increase simulation speed by treating
block parameter values as constants. In this case, you could not tune these parameters
during simulation. To preserve tunability for individual block parameters, you used data
objects or the Model Parameter Configuration dialog box. Alternatively, clearing Inline
parameters enabled block parameter tunability by default while reducing simulation
speed.

In R2015b, you can tune block parameters during simulation, and you retain the
simulation speed benefit. You do not need to use data objects or the Model Parameter

5-18

 Data Management

Configuration dialog box to preserve parameter tunability during simulation. Inline
parameters is now called Default parameter behavior. This configuration parameter
does not affect simulation.

Prior to R2015b, when you displayed sample time colors, magenta indicated constant
sample time. Now, magenta indicates blocks whose output values are constant. The
term constant refers to blocks whose output values change only when you tune block
parameters.

The table describes some block and system level changes caused by these enhancements.

Description of change Behavior in R2015a Behavior in R2015b

Inline parameters
selected: The block receives
constant sample time. When
you display sample time
colors, the block appears
magenta in color.

Constant block with sample
time set to inf

Inline parameters
cleared: The block inherits
a sample time from its
context. The block color
indicates the inherited
sample time.

The block computes its
output at the start of
simulation and whenever
you tune a block parameter.
When you display sample
time colors, the block
appears magenta in color.

Relationship between
sample time and parameter
tunability

If you use a tunable
parameter, such as a
Simulink.Parameter

object with a storage class
other than Auto, to specify
a numeric block parameter,
the block inherits a sample
time from its context.

The block computes its
output at the start of
simulation and whenever
you tune a block parameter.
When you display sample
time colors, the block
appears magenta in color.

Inline parameters
selected: If any of the
block inputs are constant,
Simulink displays an error.

Weighted sample time math
block

Inline parameters
cleared: The block inherits

The block inherits a sample
time from its context.

5-19

R2015b

Description of change Behavior in R2015a Behavior in R2015b

a sample time from its
context.

For more information about changes to the configuration parameter Inline parameters
with respect to code generation, see the R2015b Simulink Coder release notes.

For more information about constant sample time, see Constant Sample Time.

Compatibility Considerations

• An error occurs in conditionally executed subsystems where:

• A divide-by-zero operation occurs and all the blocks in the computation have
constant output values.

• The control input of an Index Vector block specifies an index that is out of range,
and the block input has a constant value.

Workaround: Use Upgrade Advisor to run Check model for parameter
initialization and tuning issues. For more information, see Check model for
parameter initialization and tuning issues.

• Prior to R2015b, if a model contained Level-2 MATLAB S-Function blocks, and you
selected Inline parameters, these blocks allowed constant sample time by default.
In R2015b, Level-2 MATLAB S-Function blocks inherit a sample time from their
context by default.

Workaround: To enable these blocks to allow constant sample time, explicitly set
SetAllowConstantSampleTime to true.

• If you set Default parameter behavior to Inlined, and you log blocks that have
tunable parameters, a mismatch can occur in the number of data points logged
between the simulation and code generation workflows. However, the value logged
remains constant where extra points are logged.

• In the code generation workflow, when the Merge block receives a constant value and
non-constant sample times, one of these conditions must hold. Otherwise Simulink
displays an error.

• The source of the constant value is a grounded signal.
• The source of the constant value is a constant block with a non-tunable parameter.

5-20

http://www.mathworks.com/help/releases/R2015b/simulink/ug/types-of-sample-time.html#brrdmmw-10
http://www.mathworks.com/help/releases/R2015b/simulink/slref/simulink-checks_bq6d4aa-1.html#buzgite-1
http://www.mathworks.com/help/releases/R2015b/simulink/slref/simulink-checks_bq6d4aa-1.html#buzgite-1

 Data Management

• There is only one constant block that feeds the Merge block.
• All other input signals to the Merge block are from conditionally executed

subsystems.
• The Merge block and outport blocks of all conditionally executed subsystems

should not specify any initial outputs.

For more information, see Merge.
• If you generate subsystem code for a subsystem that has any constant inputs, an error

can occur.

Workaround: Change the sample time at the source to an inherited or periodic sample
time.

• Models that had Inline parameters cleared and simulated without error in releases
prior to R2015b can have rate transition issues in R2015b. These issues occur because
all constant blocks now receive constant sample time regardless of the setting for
Default parameter behavior. This change can produce different sample time
propagation results.

Workaround: Use Upgrade Advisor to run Check model for parameter
initialization and tuning issues. For more information, see Check model for
parameter initialization and tuning issues.

• Suppose you generate code for a model where these conditions are true:

• The default parameter behavior is tunable.
• A constant block executes with a downstream rate that is not the fastest rate.

The logged data appears to be delayed. There is a delay equal to one step of the slower
rate that the block executes at. Simulink displays a warning during code generation.

This issue does not affect signal logging during simulation.
• If you write TLC code to generate code from an inlined S-function, and if the TLC code

contains an Outputs function, you must modify the TLC code if all of these conditions
are true:

• An output port uses or inherits constant sample time. The output port has a
constant value.

• The S-function is a multirate S-function or uses port-based sample times.

5-21

http://www.mathworks.com/help/releases/R2015b/simulink/slref/merge.html
http://www.mathworks.com/help/releases/R2015b/simulink/slref/simulink-checks_bq6d4aa-1.html#buzgite-1
http://www.mathworks.com/help/releases/R2015b/simulink/slref/simulink-checks_bq6d4aa-1.html#buzgite-1

R2015b

In this case, the TLC code must generate code for the constant-valued output port
by using the function OutputsForTID instead of the function Outputs. For more
information, see Specifying Constant Sample Time (Inf) for a Port.

• Previously, if you selected Inline parameters, parameters that used the storage
class Auto (including numeric MATLAB variables) were not tunable during
simulation. The code generated for models referenced in accelerator mode and the
code generated for top models or freestanding models in rapid accelerator mode
inlined the numeric values of the variables. In R2015b, these parameters are tunable,
and the code preserves them.

• These parameters must exist throughout simulation. For example, if you reference
a model in accelerator mode, you cannot use the referenced model CloseFcn
callback to clear the parameters. Consider using the callback of the parent model
instead. Alternatively, store the parameters in a Simulink data dictionary.

• Suppose that you use a variable myVar in an inconsistent way, for example:

• You use myVar as the value of the Gain parameter of a Gain block in a
referenced model submodel1. The Gain block applies a data type, such as
int32, to myVar.

• You also use myVar in a Gain block in the referenced model submodel2. This
Gain block applies a different data type, such as int16, to myVar.

In R2015b, you cannot use myVar in an inconsistent way across these referenced
models because myVar is tunable. To simulate the models, resolve the inconsistent
usage. For example, modify the referenced models submodel1 and submodel2 so
they apply the same data type to myVar.

• Previously, the code generated in rapid accelerator mode did not preserve expressions,
such as myVar + myOtherVar * 5, that you used to specify block parameter values.
In R2015b, the code preserves these expressions.

• If a block parameter value references workspace variables, you cannot change
the block parameter value during rapid accelerator simulation. Instead, you can
tune the values of the referenced variables. If you use a script to change the block
parameter value during simulation, modify the script so it changes the values of
the variables instead.

• Suppose that a For Each subsystem has a mask parameter a whose value is
the three-element array [1 2 3]. Suppose that the subsystem partitions the
parameter a three times so that each iteration of the subsystem uses one of the

5-22

http://www.mathworks.com/help/releases/R2015b/simulink/sfg/sample-times.html#f4-109147

 Data Management

elements in the array. You cannot use the expression 15.23^a to specify a block
parameter value inside the subsystem because the expression contains an operator
that the code generator does not support.

To simulate the model, consider implementing the expression as a block algorithm
instead. For more information about the operators that the code generator
supports in tunable expressions, see Tunable Expression Limitations.

• Previously, you could select Inline parameters to prevent mask initialization code
from executing during simulation. This technique prevented code that made changes
to the model from executing. If the changes generated errors during simulation, for
example by attempting to add blocks to the model, selecting Inline parameters
prevented the errors.

In R2015b, all mask initialization code executes during simulation. To avoid errors
during simulation, consider wrapping the mask initialization code in additional code
that prevents it from executing during simulation.

Arrays of structures as parameters

You can use arrays of structures as parameters to:

• Initialize arrays of bus signals that pass through blocks like Unit Delay. Arrays of
buses help you to reduce signal line density in model diagrams. For more information,
see Specify Initial Conditions for Bus Signals.

• Specify the Constant value parameter in a Constant block. You can use this
technique to compactly represent multiple constant-valued signals as an array of
buses. For an example, see the Constant block.

• Group workspace variables into a single variable whose value is an array of
structures. You can use this technique to organize related variables and reduce
workspace clutter. For more information about structure parameters, see Organize
Related Parameters in Structures and Arrays of Structures.

• Parameterize a For Each Subsystem, which can help you repeat an algorithm over
multiple inputs. The subsystem can partition mask parameters that are arrays of
structures. For an example, see Repeat an Algorithm Using a For Each Subsystem.

5-23

http://www.mathworks.com/help/releases/R2015b/rtw/ug/tunable-expressions.html#bqm1y7d-14
http://www.mathworks.com/help/releases/R2015b/simulink/ug/specifying-initial-conditions-for-bus-signals.html
http://www.mathworks.com/help/releases/R2015b/simulink/slref/constant.html
http://www.mathworks.com/help/releases/R2015b/simulink/ug/using-structure-parameters.html
http://www.mathworks.com/help/releases/R2015b/simulink/ug/using-structure-parameters.html
http://www.mathworks.com/help/releases/R2015b/simulink/ug/repeat-an-algorithm-using-a-for-each-subsystem.html

R2015b

Improved methods to create custom data objects

Model Explorer

Previously, to create data objects such as Simulink.Parameter and

Simulink.Signal, you used the Model Explorer buttons Add Parameter and Add

Signal . To create data objects from a package other than Simulink, you specified the
package using Simulink Preferences.

In R2015b, to select a data class other than those in the package Simulink, you can use
the new arrows beside these buttons. You can select any data class whose definition is on
the MATLAB path, including custom classes such as myPackage.myParameter.

For more information about creating data objects, see Data Objects.

Data Object Wizard

Previously, to create custom data objects using the Data Object Wizard, you specified a
default data class package using Simulink Preferences.

In R2015b, to create objects from data classes in any package, including your own
packages, you can select the classes using the Data Object Wizard.

For more information about creating data objects using the Data Object Wizard, see
Create Data Objects for a Model Using Data Object Wizard.

No creation of parameter objects for mask initialization code

You now cannot use mask initialization code to create parameter objects. Parameter
objects are objects of the class Simulink.Parameter and of any of its subclasses that
you create. For more information about block masking and using MATLAB code to
initialize a mask, see Initialize Mask.

Compatibility Considerations

If you use existing mask initialization code that creates parameter objects, you must edit
the code so that it does not create parameter objects.

5-24

http://www.mathworks.com/help/releases/R2015b/simulink/ug/working-with-data-objects.html
http://www.mathworks.com/help/releases/R2015b/simulink/ug/working-with-data-objects.html#bqgy1ty
http://www.mathworks.com/help/releases/R2015b/simulink/ug/initialize-mask.html

 Data Management

Sample time for signal logging

In the Signal Properties dialog box, you can use the new Sample Time option for a
signal marked for signal logging. This option:

• Maintains the separation of design and testing, because you do not need to insert a
Rate Transition block to have a consistent sample time for logged signals

• Reduces the amount of logged data for continuous time signals, for which setting
decimation is not relevant

• Eliminates the need to postprocess logged signal data for signals with different
sample times

For details, see Set Sample Time for a Logged Signal.

Same format for logging states, output, and final states as used for other
logging and loading techniques

The default for the Configuration Parameters > Data Import/Export > Format
parameter is now Dataset, which:

• Simplifies post processing of logged data
• Makes it easier to take advantage of features that require Dataset format

Root Inport loading in rapid accelerator mode using Dataset format

In rapid accelerator mode, using Dataset format to load root Inport blocks now supports:

• Specifying a single Dataset object, as an alternative to specifying a long comma-
separated list using the Configuration Parameters > Data Import/Export >
Input parameter

• Loading of buses and arrays of buses, including underspecified buses and arrays of
buses

• Loading of fixed-point and enum data
• No code regeneration for new data

Logged signals with propagated names

Signal logging and root Outport block logging data for a signal captures the propagated
signal name if the logging format is Dataset and:

5-25

http://www.mathworks.com/help/releases/R2015b/simulink/ug/configuring-a-signal-for-signal-logging.html#buwufgy

R2015b

• For signal logging, you:

• Mark one or more signals for signal logging and in the Signal Properties dialog box
select Show Propagated Signals.

• Enable Configuration Parameters > Data Import/Export > Signal logging.
• For root Outport block logging, you select Configuration Parameters > Data

Import/Export > Output.

The Simulink.SimulationData.Signal class has a new PropagatedName property
for displaying the propagated signal name. The Simulink.SimulationData.Dataset
class displays propagated signal names as a comment (the propagated signal name
preceded by a percent sign (%)). In the logged data, the propagated signal name does not
include angle brackets (<>).

Tolerance for data type mismatch between bus elements and structure
fields

Previously, when you used a MATLAB structure to initialize a bus signal, or to drive a
bus signal using a Constant block, you matched the data types of the structure fields
with those of the bus signal elements.

In R2015b, you do not need to match the data types when you simulate a model. You
can use doubles to specify the structure field values, and use the bus signal elements
to control the data types. Prior to simulation, the bus elements cast the structure field
values.

However, for other applications such as creating tunable initial conditions in the
generated code, you must match the data types.

To decide whether to explicitly specify field data types, see Decide Whether to Specify
Data Types for Structure Fields.

Summary of changes made to data dictionary

If you use a Simulink data dictionary to store the variables that a model uses, you can
display a summary of all of the unsaved changes that you made to the dictionary. You
can use this technique to:

• Track your changes while you create and modify dictionary entries.
• Decide which changes to keep or discard before you close an unsaved dictionary.

5-26

http://www.mathworks.com/help/releases/R2015b/simulink/ug/specifying-initial-conditions-for-bus-signals.html#buxv6qs-1
http://www.mathworks.com/help/releases/R2015b/simulink/ug/specifying-initial-conditions-for-bus-signals.html#buxv6qs-1

 Data Management

• Recover variables that you deleted.
• Recover dictionary references that you removed.

For an example, see View and Revert Changes to Entire Dictionary.

Rename All in Goto blocks

You can use the Rename All button in Goto block dialog boxes to quickly rename the
corresponding tag in From and Goto Tag Visibility blocks. For more information, see the
Goto block.

Change to visibility of SamplingMode property of signal objects

The Simulink.Signal property SamplingMode is hidden if you set it to 'auto', the
default value. Previously, when you used a Simulink.Signal object to define a data
store, you set SamplingMode to 'Sample based'. You can now leave the property at
the default value, 'auto'.

If you use existing code that creates Simulink.Signal objects and changes the value of
the SamplingMode property, the property is not hidden for these objects.

This change supports recent changes to frame-based processing with DSP System
Toolbox. For more information, see Sample- and Frame-Based Concepts in the DSP
System Toolbox documentation.

Continued availability of Simulink.saveVars

The R2014a Release Notes state that the function Simulink.saveVars will be removed
in a future release. As of R2015b, you can continue to use this function. Existing scripts
that use Simulink.saveVars do not generate warnings.

However, Simulink.saveVars is not recommended. To save workspace variables to a
MATLAB script, use matlab.io.saveVariablesToScript instead of Simulink.saveVars.

Simulink.SimulationData.Dataset updates

Simulink.SimulationData.Dataset.find is a new method that finds elements with
specified property names and values. For documentation on this method, in the MATLAB
Command Window, type help Simulink.SimulationData.Dataset.find.

5-27

http://www.mathworks.com/help/releases/R2015b/simulink/ug/view-and-revert-changes-to-dictionary-data.html#buvekps-1
http://www.mathworks.com/help/releases/R2015b/simulink/slref/goto.html
http://www.mathworks.com/help/releases/R2015b/dsp/ug/sample-and-frame-based-concepts.html
http://www.mathworks.com/help/releases/R2015b/matlab/ref/matlab.io.savevariablestoscript.html
http://www.mathworks.com/help/releases/R2015b/simulink/slref/simulink.simulationdata.dataset.find.html

R2015b

Edit Input button is now Connect Input

The Input > Edit Input button on the Configuration Parameters Data Import/Export
pane is now Connect Input.

Legacy Code Tool support for conditional outputs

When you use the legacy_code function, you can now specify whether the legacy code
conditionally writes the output ports. Use the outputsConditionallyWritten
S-function option. If true, the generated S-function specifies that the
memory associated with each output port cannot be overwritten and is global
(SS_NOT_REUSABLE_AND_GLOBAL). If false, the memory associated with each output
port is reusable and is local (SS_REUSABLE_AND_LOCAL). By default, the value is false
(0).

5-28

http://www.mathworks.com/help/releases/R2015b/simulink/slref/legacy_code.html

 Connection to Hardware

Connection to Hardware

Raspberry Pi 2 Support: Run Simulink models on Raspberry Pi 2 Model B
hardware

You can use the Simulink Support Package for Raspberry Pi Hardware with Raspberry
Pi 2 Model B hardware.

Arduino Yun: Design and run Simulink models on Arduino Yun hardware

You can use the Simulink Support Package for Arduino Hardware with Arduino Yun
hardware.

Hardware Implementation Selection: Quickly generate code for popular
embedded processors

Specification of hardware configurations has been simplified. Top-level Configuration
Parameters dialog box panes, Run on Target Hardware and Coder Target, have been
removed. Parameters previously available on those panes now appear on the Hardware
Implementation pane. A parameter has also moved from the Code Generation pane
to the Hardware Implementation pane.

This list summarizes the R2015b changes and new behavior:

• By default, the Hardware Implementation pane lists Hardware board, Device
vendor, and Device type parameter fields only.

• If you use Simulink without a Simulink Coder license, initially parameters on the
Hardware Implementation pane are disabled. To enable them, click Enable
hardware specification. The parameters remain enabled for the current MATLAB
session.

• By default, the Hardware board list includes: None or Determine by Code
Generation system target file, and Get Hardware Support Packages.
After installing a hardware support package, the list also includes corresponding
hardware board names.

• If you select a hardware board name, parameters for that board appear in the dialog
box display.

5-29

R2015b

• Lists for the Device vendor and Device type parameters have been updated to
reflect hardware that is available on the market. The default Device vendor and
Device type are Intel and x86-64 (Windows64), respectively.

• If Simulink Coder is installed, the revised Hardware Implementation pane
identifies the system target file that you selected on the Code Generation pane.

• A Device details option provides a way to display parameters for setting details such
as number of bits and byte ordering.

• To specify target hardware for a Simulink support package, select a value from
Configuration Parameters > Hardware Implementation > Hardware board.
Before R2015b, you selected Tools > Run on Target Hardware > Prepare to run.
Then, you selected a value from Configuration Parameters > Run on Target
Hardware > Target hardware.

• To specify target hardware for an Embedded Coder support package, select a value
from Configuration Parameters > Hardware Implementation > Hardware
board. Before R2015b, you selected a value from Configuration Parameters >
Code Generation > Target hardware.

• The Test hardware section was removed. Configure test hardware from the
Configuration Parameters list view. Set ProdEqTarget to off, which enables
parameters for configuring test hardware details.

• If you set Configuration Parameters > Code Generation > System target file
to ert.tlc, realtime.tlc, or autosar.tlc, the default setting for Configuration
Parameters > Hardware Implementation > Hardware board is None. If you set
System target file to value other than ert.tlc, autosar.tlc, or realtime.tlc,
the default setting for Hardware board is Determine by Code Generation
system target file.

For more information, see Hardware Implementation Pane.

Compatibility Considerations

Starting in R2015b:

• By default, the Hardware Implementation pane lists Hardware board, Device
vendor, and Device type parameter fields only. To view parameters for setting
details, such as number of bits and byte ordering, click Device details.

• The following devices appear on the Hardware Implementation pane only for
models that you create with a version of the software earlier than R2015b. These
devices are considered legacy devices.

5-30

http://www.mathworks.com/help/releases/R2015b/simulink/gui/hardware-implementation-pane.html

 Connection to Hardware

Generic, 32-bit Embedded Processor
Generic, 64-bit Embedded Processor (LP64)
Generic, 64-bit Embedded Processor (LLP64)
Generic, 16-bit Embedded Processor
Generic, 8-bit Embedded Processor
Generic, 32-bit Real-Time Simulator
Generic, 32-bit x86 compatible
Intel, 8051 Compatible
Intel, x86–64
SGI, UltraSPARC Iii

In R2015b, if you open a model configured for a legacy device and change the Device
type setting, you cannot select the legacy device again.

• Device parameter Signed integer division rounds to is set to Zero instead of
Undefined. For some cases, numerical differences can occur in results produced with
Zero versus Undefined for simulation and code generation.

This change does not apply to legacy devices.
• To associate a new model with an existing configuration set that has the following

characteristics, configure the model to use the same hardware device as the existing
model.

• The model consists of a model reference hierarchy. Models in the hierarchy use
different configuration sets.

• The existing configuration set was saved as a script and associated with a
configuration set variable.

If the code generator detects differences in device parameter settings, a consistency
error occurs. To correct the condition, look for differences in the device parameter
settings, and make the appropriate adjustments.

5-31

R2015b

Signal Management

Virtual bus signal inputs to blocks that require nonbus or nonvirtual bus
input

Starting in R2015b, virtual bus signal input to blocks that require nonbus or nonvirtual
bus input can cause an error. The error occurs when a virtual bus input signal is
generated by a block that specifies a bus object as its output data type. Examples of
blocks that can specify a bus object as its output data type include a Bus Creator block or
a root Inport block. The blocks that cause an error when they have a virtual bus input in
this situation are:

• Assignment
• Delay

This block causes an error only if you set an initial condition from the dialog that is a
MATLAB structure or zero and you specify a value for State name.

• Permute Dimension
• Reshape
• Selector
• Unit Delay

This block causes an error only if you set an initial condition from the dialog that is a
MATLAB structure or zero and you specify a value for State name.

• Vector Concatenate

Generating an error when this situation occurs helps to promote consistent output by
requiring proper input to these blocks.

To check for proper virtual bus usage and for Mux blocks used to create bus signals, use
the new Upgrade Advisor Check bus usage check.

The new Upgrade Advisor check inserts a Bus to Vector block to attempt to convert
virtual bus input signals to vector signals. For issues that the Upgrade Advisor identifies
but cannot fix, modify the model manually. For details, see Correct Buses Used as Muxes
and Prevent Bus and Mux Mixtures.

5-32

http://www.mathworks.com/help/releases/R2015b/simulink/ug/correct-buses-used-as-muxes.html
http://www.mathworks.com/help/releases/R2015b/simulink/ug/avoiding-mux-bus-mixtures.html

 Signal Management

Compatibility Considerations

In R2015b, a virtual bus input signal to the affected blocks causes an error message,
regardless of the Configuration Parameters > Diagnostics > Connectivity > Bus
signal treated as vector setting.

In models created in releases earlier than R2015b, if the Bus signal treated as vector
diagnostic setting is error, there is no compatibility issue when you run the model in
R2015b.

To help you to address this issue, use the Upgrade Advisor Check bus usage check.

Entire nested bus assignment for Bus Assignment block

If a bus signal input to a Bus Assignment block contains a nested bus signal, then you
can assign or select the nested bus signal as a whole. However, the nested bus cannot be
nested inside of an array of buses. Before R2015b, you had to assign each signal in the
nested bus.

Support for entire nested bus signal assignment reduces:

• The number of blocks in a diagram
• The maintenance effort

For details, see Bus Assignment.

5-33

http://www.mathworks.com/help/releases/R2015b/simulink/slref/busassignment.html

R2015b

Block Enhancements

Waveform Generator Block: Define and output arbitrary waveform
signals

The Waveform Generator block outputs waveforms using signal notations. This block is
located in the Sources sublibrary.

From Spreadsheet Block: Read signal data into Simulink from a
spreadsheet

The From Spreadsheet block reads data from spreadsheets. This block is located in the
Simulink Extras/Additional Sources sublibrary.

MATLAB System block support for nonvirtual buses

The MATLAB System block now supports nonvirutal buses. For more information, see
Nonvirtual Buses and MATLAB System Block. For an example, see Using Buses with
MATLAB System Blocks.

Inport block update

The Inport block now has a Connect Input button. Use this button to import, visualize,
and map signal and bus data to root-level inports using the Root Inport Mapping tool.

From File updates for file name and signal preview

The From File block File name parameter has been updated to include:

• A file browse button
• A view button that lets you plot and inspect signals.

Inheriting of continuous sample time for discrete blocks

The Configuration Parameters > Diagnostics > Sample Time > Discrete used as
continuous diagnostic was removed. If a discrete block (such as the Unit Delay block)
inherits a continuous sample time, the block returns an error.

5-34

http://www.mathworks.com/help/releases/R2015b/simulink/slref/waveformgenerator.html
http://www.mathworks.com/help/releases/R2015b/simulink/ref_extras/fromspreadsheet.html
http://www.mathworks.com/help/releases/R2015b/simulink/slref/matlabsystem.html
http://www.mathworks.com/help/releases/R2015b/simulink/ug/nonvirtual-buses-and-matlab-system-block.html
examples/using-buses-with-matlab-system-blocks.html
examples/using-buses-with-matlab-system-blocks.html
http://www.mathworks.com/help/releases/R2015b/simulink/slref/inport.html
http://www.mathworks.com/help/releases/R2015b/simulink/slref/fromfile.html
http://www.mathworks.com/help/releases/R2015b/simulink/slref/unitdelay.html

 Block Enhancements

Evenly spaced breakpoints in Lookup Tables

A new format is available to specify evenly spaced breakpoints in the Prelookup and n-
D Lookup Table blocks. For more information, see the Specification parameter in the
Prelookup block reference page and the Breakpoints specification parameter in the n-
D Lookup Table reference page.

Integrator block: Wrapped states for modeling rotary and cyclic state
trajectories

The Integrator block has been enhanced to support wrapped states when modeling
rotary, cyclic, or periodic state trajectories. This support for wrapping states provides
these advantages.

• It eliminates simulation instability when your model approaches large angles and
large state values.

• It reduces the number of solver resets during simulation and eliminates the need for
zero-crossing detection, improving simulation time.

• It eliminates large angle values, speeding up computation of trigonometric functions
on angular states.

• It improves solver accuracy and performance and enables unlimited simulation time.

Variant Subsystem block: Enhanced option for generating preprocessor
conditionals

The option Generate preprocessor conditionals in the Variant Subsystem block
parameters dialog box has been replaced with the option Analyze all choices during
update diagram and generate preprocessor conditionals. When you select this
option, Simulink analyzes all variant choices during an update diagram or simulation.
This analysis provides early validation of the code generation readiness of all variant
choices.

Compatibility Considerations

Previously, when the option to generate preprocessor conditionals was switched on,
Simulink analyzed all variant choices only during the code generation phase. Now,
Simulink performs this analysis during the update diagram phase. As a result, errors

5-35

http://www.mathworks.com/help/releases/R2015b/simulink/slref/prelookup.html
http://www.mathworks.com/help/releases/R2015b/simulink/slref/ndlookuptable.html
http://www.mathworks.com/help/releases/R2015b/simulink/slref/ndlookuptable.html
http://www.mathworks.com/help/releases/R2015b/simulink/slref/prelookup.html
http://www.mathworks.com/help/releases/R2015b/simulink/slref/ndlookuptable.html
http://www.mathworks.com/help/releases/R2015b/simulink/slref/ndlookuptable.html
http://www.mathworks.com/help/releases/R2015b/simulink/slref/integrator.html

R2015b

that you would normally see during code generation appear earlier, during an update
diagram.

Constant sample time in S-function blocks

MATLAB S-function blocks no longer support a constant sample time (Inf) for their
ports by default.

Compatibility Considerations

To allow ports in your MATLAB S-function blocks to have a sample time of Inf, use the
SetAllowConstantSampleTime command.

5-36

http://www.mathworks.com/help/releases/R2015b/simulink/sfg/setallowconstantsampletime.html

 MATLAB Function Blocks

MATLAB Function Blocks

Calling of Simulink Functions

You can call a Simulink Function block from inside of a MATLAB Function block. You
can also call Stateflow functions with Export Chart Level Functions (Make Global)
and Allow exported functions to be called by Simulink checked in the chart
Properties dialog box.

Nondirect feedthrough in MATLAB Function blocks

By default, MATLAB Function blocks have direct feedthrough enabled. To disable, in
the Ports and Data Manager, you can now clear the Allow direct feedthrough check
box. Nondirect feedthrough enables semantics to ensure that outputs rely only on current
state.

To use nondirect feedthrough, do not program outputs to rely on inputs or updated
persistent variables. For example, do not use the following code in a nondirect
feedthrough block:

counter = counter + 1; % update state

output = counter; % compute output based on updated state

Instead, use code such as:

output = counter; % compute output based on current state

counter = counter + 1; % update state

Also, nondirect feedthrough semantics require function inlining. Do not disable inlining.

Using nondirect feedthrough enables you to use MATLAB Function blocks in a feedback
loop and prevent algebraic loops.

Overflow and data range detection settings unified with Simulink

Previously, you controlled overflow detection in MATLAB Function blocks with the
configuration parameter Detect wrap on overflow. This parameter was on the
Simulation Target pane in the Model Configuration Parameters dialog box.

You now control the overflow detection for MATLAB Function blocks with the
configuration parameter Wrap on overflow. This parameter is on the Diagnostics:

5-37

R2015b

Data Validity pane in the Model Configuration Parameters dialog box. Choose one of
these settings: none, warning, and error.

Previously, you controlled data range error checking in MATLAB Function blocks in the
editor, with Simulation > Debug > MATLAB & Stateflow Error Checking Options
> Data Range.

You now control data range checking with the configuration parameter Simulation
range checking. This parameter is on the Diagnostics: Data Validity pane in the
Model Configuration Parameters dialog box. Choose one of these three settings: none,
warning, and error.

See Diagnostics Pane: Data Validity.

Compatibility Considerations

When you open a model with a MATLAB Function block saved in a previous release, a
change in behavior is possible. These options are no longer valid.

• Detect wrap on overflow on the Simulation Target pane of the Model
Configuration Parameters dialog box

• Simulation > Debug > MATLAB & Stateflow Error Checking Options > Data
Range in the Stateflow editor

In R2015b, the software determines overflow detection and data range by the setting
of these Simulink options on the Diagnostics: Data Validity pane in the Model
Configuration Parameters dialog box.

• Wrap on overflow
• Simulation range checking

Set each configuration parameter to none, warning, or error. The software displays a
warning if the previous MATLAB Function block options saved with the model were set
differently than the current Simulink options.

The command-line parameter SFSimOverflowDetection is no
longer valid. Use IntegerOverflowMsg instead. The API parameter
Debug.RunTimeCheck.DataRangeChecks is no longer valid. Use the command-line
parameter SignalRangeChecking instead.

5-38

http://www.mathworks.com/help/releases/R2015b/simulink/gui/diagnostics-pane-data-validity.html

 MATLAB Function Blocks

When you save a current model with a MATLAB Function block in a previous version,
the current Simulink parameters are saved. Both the MATLAB Function block overflow
and data range parameters are saved as selected.

No frame-based sampling mode for outputs

In R2015b, you can no longer set the sampling mode of outputs to frame based in
MATLAB Function blocks. Models created in previous releases using frame-based
sampling mode continue to behave as they did before this release.

Code generation for cell arrays

In R2015b, you can generate code from MATLAB code that uses cell arrays.

The code generation software classifies a cell array as homogeneous or heterogeneous.
This classification determines how a cell array is represented in the generated C/C++
code. It also determines how you can use the cell array in MATLAB code from which you
generate C/C++ code. See Homogeneous vs. Heterogeneous Cell Arrays.

As long as you do not specify conflicting requirements, you can control whether a
cell array is homogeneous or heterogeneous. See Control Whether a Cell Array is
Homogeneous or Heterogeneous.

For information about restrictions when you use cell arrays in a MATLAB Function
block, see Cell Array Requirements and Limitations for Code Generation.

LAPACK calls during simulation for algorithms that call linear algebra
functions

To improve the simulation speed for MATLAB Function block algorithms that call linear
algebra functions, the simulation software can now call LAPACK functions. If the input
arrays for the linear algebra functions meet certain criteria, the simulation software
generates calls to relevant LAPACK functions.

LAPACK is a software library for numerical linear algebra. MATLAB uses this library
in some linear algebra functions such as eig and svd. The simulation software uses the
LAPACK library that is included with MATLAB.

For information about the open source reference version of LAPACK, see LAPACK —
Linear Algebra PACKage.

5-39

http://www.mathworks.com/help/releases/R2015b/simulink/ug/homogeneous-vs-heterogeneous-cell-arrays.html
http://www.mathworks.com/help/releases/R2015b/simulink/ug/control-whether-a-cell-array-is-homogeneous-or-heterogeneous.html
http://www.mathworks.com/help/releases/R2015b/simulink/ug/control-whether-a-cell-array-is-homogeneous-or-heterogeneous.html
http://www.mathworks.com/help/releases/R2015b/simulink/ug/cell-array-restrictions-for-code-generation.html
http://www.netlib.org/lapack
http://www.netlib.org/lapack

R2015b

Code generation for additional Image Processing Toolbox and Computer
Vision System Toolbox functions

Image Processing Toolbox

bwareaopen houghpeaks immse integralBoxFilter
grayconnected imabsdiff imresize psnr
hough imcrop imrotate
houghlines imgaborfilt imtranslate

See Image Processing Toolbox in Functions and Objects Supported for C and C++ Code
Generation — Category List.

Computer Vision System Toolbox

• insertText
• extractLBPFeatures

See Computer Vision System Toolbox in Functions and Objects Supported for C and C++
Code Generation — Category List.

Code generation for additional Statistics and Machine Learning Toolbox
functions

• kmeans
• randsample

See Statistics and Machine Learning Toolbox in Functions and Objects Supported for C
and C++ Code Generation — Category List.

Code generation for additional MATLAB functions

Data Types in MATLAB

• cell
• fieldnames
• struct2cell

5-40

http://www.mathworks.com/help/releases/R2015b/images/ref/bwareaopen.html
http://www.mathworks.com/help/releases/R2015b/images/ref/houghpeaks.html
http://www.mathworks.com/help/releases/R2015b/images/ref/immse.html
http://www.mathworks.com/help/releases/R2015b/images/ref/integralboxfilter.html
http://www.mathworks.com/help/releases/R2015b/images/ref/grayconnected.html
http://www.mathworks.com/help/releases/R2015b/images/ref/imabsdiff.html
http://www.mathworks.com/help/releases/R2015b/images/ref/imresize.html
http://www.mathworks.com/help/releases/R2015b/images/ref/psnr.html
http://www.mathworks.com/help/releases/R2015b/images/ref/hough.html
http://www.mathworks.com/help/releases/R2015b/images/ref/imcrop.html
http://www.mathworks.com/help/releases/R2015b/images/ref/imrotate.html
http://www.mathworks.com/help/releases/R2015b/images/ref/houghlines.html
http://www.mathworks.com/help/releases/R2015b/images/ref/imgaborfilt.html
http://www.mathworks.com/help/releases/R2015b/images/ref/imtranslate.html
http://www.mathworks.com/help/releases/R2015b/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bsl0arh-1
http://www.mathworks.com/help/releases/R2015b/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2015b/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2015b/vision/ref/inserttext.html
http://www.mathworks.com/help/releases/R2015b/vision/ref/extractlbpfeatures.html
http://www.mathworks.com/help/releases/R2015b/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bsmvmqi-1
http://www.mathworks.com/help/releases/R2015b/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2015b/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2015b/stats/kmeans.html
http://www.mathworks.com/help/releases/R2015b/stats/randsample.html
http://www.mathworks.com/help/releases/R2015b/simulink/ug/functions-supported-for-code-generation--categorical-list.html#btwz3ma
http://www.mathworks.com/help/releases/R2015b/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2015b/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2015b/matlab/ref/cell.html
http://www.mathworks.com/help/releases/R2015b/matlab/ref/fieldnames.html
http://www.mathworks.com/help/releases/R2015b/matlab/ref/struct2cell.html

 MATLAB Function Blocks

See Data Types in MATLAB in Functions and Objects Supported for C and C++ Code
Generation — Category List.

String Functions in MATLAB

• iscellstr
• strjoin

See String Functions in MATLAB in Functions and Objects Supported for C and C++
Code Generation — Category List.

Code generation for additional Communications System Toolbox, DSP
System Toolbox, and Phased Array System Toolbox functions and System
objects

Communications System Toolbox

comm.CoarseFrequencyCompensator

See Communications System Toolbox in Functions and Objects Supported for C and C++
Code Generation — Category List.

DSP System Toolbox

• dsp.IIRHalfbandDecimator
• dsp.IIRHalfbandInterpolator
• dsp.AllpassFilter

See DSP System Toolbox in Functions and Objects Supported for C and C++ Code
Generation — Category List.

Phased Array System Toolbox

• phased.TwoRayChannel
• phased.GCCEstimator
• phased.WidebandRadiator
• phased.SubbandMVDRBeamformer
• phased.WidebandFreeSpace
• gccphat

5-41

http://www.mathworks.com/help/releases/R2015b/simulink/ug/functions-supported-for-code-generation--categorical-list.html#br5wf33-1
http://www.mathworks.com/help/releases/R2015b/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2015b/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2015b/matlab/ref/iscellstr.html
http://www.mathworks.com/help/releases/R2015b/matlab/ref/strjoin.html
http://www.mathworks.com/help/releases/R2015b/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bq1h2z8-31
http://www.mathworks.com/help/releases/R2015b/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2015b/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2015b/comm/ref/comm.coarsefrequencycompensator-class.html
http://www.mathworks.com/help/releases/R2015b/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bsl_qz1-1
http://www.mathworks.com/help/releases/R2015b/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2015b/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.iirhalfbanddecimator-class.html
http://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.iirhalfbandinterpolator-class.html
http://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.allpassfilter-class.html
http://www.mathworks.com/help/releases/R2015b/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bt7ln6w
http://www.mathworks.com/help/releases/R2015b/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2015b/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2015b/phased/ref/phased.tworaychannel-class.html
http://www.mathworks.com/help/releases/R2015b/phased/ref/phased.gccestimator-class.html
http://www.mathworks.com/help/releases/R2015b/phased/ref/phased.widebandradiator-class.html
http://www.mathworks.com/help/releases/R2015b/phased/ref/phased.subbandmvdrbeamformer-class.html
http://www.mathworks.com/help/releases/R2015b/phased/ref/phased.widebandfreespace-class.html
http://www.mathworks.com/help/releases/R2015b/phased/ref/gccphat.html

R2015b

See Phased Array System Toolbox in Functions and Objects Supported for C and C++
Code Generation — Category List.

5-42

http://www.mathworks.com/help/releases/R2015b/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bt1pnss
http://www.mathworks.com/help/releases/R2015b/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2015b/simulink/ug/functions-supported-for-code-generation--categorical-list.html

R2015a
Version: 8.5

New Features

Bug Fixes

Compatibility Considerations

R2015a

Simulink Editor

Bus Smart Editing Cue: Automatically create a bus from a set of signals

You can select multiple blocks or signals in an area of a model to create a bus for.

Using the Create Bus button to create a bus automatically performs these actions:

• Creates a Bus Creator block with the right number of inputs
• Resizes the Bus Creator block to an appropriate size for the number of input signals
• Orients the Bus Creator block to the direction of the input signals
• Connects the signals to the Bus Creator block

Area Annotations: Call out and separate regions of interest in model

You can select multiple objects in an area of a model to annotate an area of interest in
your model.

6-2

 Simulink Editor

1 In the Simulink Editor, drag to select the area of the model you want to create an
area around.

2 In the action bar, click Create Area.

For more information, see Box and Label Areas of a Model.

Perspectives Controls: Access alternative views of your model, such as
harness and interface views

You can switch to different views of a model, such as harness view to view test harnesses
and interface view to view interfaces of your system.

1 In the Simulink Editor, click the control in the lower-right corner.

2 Click the view you want to see.

6-3

http://www.mathworks.com/help/releases/R2015a/simulink/ug/simulink-areas.html

R2015a

Saving of viewmarks in Simulink models

You can now store viewmarks with your model. For more information, see Use
Viewmarks to Save Views of Models.

Highlighting of the subsystem you navigated from

When you navigate out of a subsystem, Simulink now highlights that subsystem
temporarily. The highlight helps you to identify the subsystem you were working in most
recently.

Annotation connector colors and width

You can now specify the color and width of annotation connectors. Right-click the
annotation connector and use the Format menu.

6-4

http://www.mathworks.com/help/releases/R2015a/simulink/ug/use-viewmarks-to-save-views-of-models.html
http://www.mathworks.com/help/releases/R2015a/simulink/ug/use-viewmarks-to-save-views-of-models.html

 Simulink Editor

To create an annotation connector, see Add Lines to Connect Annotations to Blocks

Undo and redo of block parameter value changes

Block parameter changes using block dialog boxes are now undoable. When you use
Undo after you make changes to block parameter values, the values revert and the
affected block briefly appears highlighted. A Redo command as the next action restores
the changes and also briefly highlights the block. For more information on Undo and
Redo, see “Interactive Model Building”.

Display of product name in model title bar

The Simulink Editor now displays the word Simulink next to the model name in the
model title bar.

6-5

http://www.mathworks.com/help/releases/R2015a/simulink/ug/add-lines-to-connect-annotations-to-blocks.html

R2015a

Simulation Analysis and Performance

Dashboard Block Library: Tune and test simulations with graphical
controls and displays

The Dashboard block library contains controls and displays that enable you to tune block
parameters or monitor signals. The controls can be active during simulation so you can
tune parameters and optimize your model while it is running or paused. The blocks are
added directly to your Simulink model canvas and connected to signals or blocks. The
Dashboard block library includes:

• Knobs
• Switches
• Gauges
• Dashboard scope
• Lamp

Algebraic Loop Highlighting: Find and remove algebraic loops in the
model to boost simulation speed

You can now identify and remove all algebraic loops in your model using the new
highlight feature. This option traverses through the hierarchy of a model to highlight
real and artificial algebraic loops. A report lists the loops with color codes for easy
isolation. This technique allows you to view all the loops in a model simultaneously, so
you can remove them quickly and speed up your simulation.

For more information, see Highlight Algebraic Loops in the Model.

Faster Simulations with Accelerated Referenced Models: Run faster
consecutive simulations and step back and forth through simulations

Simulating referenced models in Accelerator mode now supports these actions that
involve using SimState:

• Do a fast restart
• Save complete SimState in final state logging
• Restart from saved state

6-6

http://www.mathworks.com/help/releases/R2015a/simulink/ug/algebraic-loops.html#bup_63x

 Simulation Analysis and Performance

• Step through a simulation

If the referenced model simulated in Accelerator mode contains any of these blocks, then
you cannot perform the actions listed above:

• Level 2 MATLAB S-Function
• MATLAB System
• n-D Lookup Table
• S-Function (with custom SimState or PWork vectors)
• To File
• Simscape blocks

Use SimulationMetadata to retrieve simulation metadata information

You can store and retrieve metadata about a simulation using SimulationMetadata.
The SimulationOutput object of the simulation contains the metadata object. Use
SimulationMetadata to analyze archived simulations or compare results from multiple
simulations. See Simulink.SimulationMetadata for more details.

Simplified conversion of logged data to Dataset format for a common
logged data format

You can use the Simulink.SimulationData.Dataset constructor to convert data that
was logged in one of the following formats to Dataset format:

• Array
• Structure
• Structure with time
• MATLAB timeseries
• ModelDataLogs

Converting data from other Simulink logging formats to Dataset format simplifies
writing scripts to post-process data logged using different:

• Logging techniques (for example, for models with multiple To Workspace blocks using
different data formats or for models that use To Workspace blocks and log signals
using ModelDataLogs format)

6-7

http://www.mathworks.com/help/releases/R2015a/simulink/slref/simulink.simulationmetadata-class.html

R2015a

• Simulation modes (for example, Normal and Accelerator)

The conversion to Dataset format also makes it easier to take advantage of features
that require Dataset format. Now you can easily convert data logged in earlier releases
that used a format other than Dataset to work well with Dataset data in a more recent
release.

You can use the Simulink.SimulationData.Dataset.concat method to combine
Dataset objects into one concatenated Dataset object.

For more information, see Simulink.SimulationData.Dataset.

Default setting for Automatic solver parameter selection

The default setting for Automatic solver parameter selection in the Diagnostics
pane of the Model Configuration Parameters dialog box is now set to none. Previously,
the default setting for this option was warning.

Improved heuristic for step size calculation

Simulink now uses an improved heuristic to calculate the Max step size and Fixed
step size when you set these parameters to auto in the Solver pane of the Model
Configuration Parameters dialog box. The heuristic uses the dynamics of a model in a
better way to calculate these parameters. For more information, see Max step size.

Step size details in solver information tooltip

When you set Max step size and Fixed step size to auto in the Solver pane of the
Model Configuration Parameters dialog box, you can see the numerical values of these
settings in the solver information tooltip. Previously, Simulink displayed this information
as a warning message. For more information, see Solver Overview.

Solver information in model after simulation

Starting in R2015a, after a model compiles, the right hand corner of the status bar
displays the solver used to compile a model. Previously, Simulink reverted to the
configuration setting after a simulation completed. For more information, see Solver
Overview.

6-8

http://www.mathworks.com/help/releases/R2015a/simulink/slref/simulink.simulationdata.dataset-class.html
http://www.mathworks.com/help/releases/R2015a/simulink/gui/solver-pane.html#bq9bzfv-1
http://www.mathworks.com/help/releases/R2015a/simulink/gui/solver-pane.html#bq7cmsp-1_1
http://www.mathworks.com/help/releases/R2015a/simulink/gui/solver-pane.html#bq7cmsp-1_1
http://www.mathworks.com/help/releases/R2015a/simulink/gui/solver-pane.html#bq7cmsp-1_1

 Component-Based Modeling

Component-Based Modeling

Consistent Data Support for Testing Components: Load input and log data
of a component from buses and all data types

Logging states and root outports now supports full logging capabilities in Normal and
Accelerator (including Model Reference Accelerator) simulation modes. State and root
outport logging in R2015a:

• Supports all data types, including:

• Bus data (virtual and nonvirtual buses and arrays of buses)
• Enumerated data
• Fixed-point data

• Logs states and outports based on their rates

Simulink supports Dataset objects for root inport data import, which eliminates the
need to specify multiple inputs using a comma-separated list.

Model Reference Conversion Advisor enhancements

In R2015a, the Model Reference Conversion Advisor make the conversion of a subsystem
to a referenced model easier than in previous releases.

• You can have the advisor compare the results of simulating the top model for
the referenced model to the results of simulating the baseline model that has the
subsystem. In the Check conversion input parameters check, select Check
simulation results after conversion.

You can specify the following for the comparison of the simulations:

• Stop time for the simulation
• Absolute signal tolerance
• Relative signal tolerance

• In the Check conversion input parameters check, you can specify the simulation
mode for the Model block that references the referenced model.

6-9

R2015a

• The conversion process stores all of the data it creates (bus objects, signal objects, and
tunable parameters) in one file. To specify the file for the advisor to use, in the Check
conversion input parameters check, use the Conversion data file name option.

• The reports for the checks include links that highlight the relevant blocks in the
model.

• Restoring the model to the pre-conversion state is faster than in previous releases.
Also, the report for the Complete conversion check now includes a link to restore
the model. That option provides an alternative to selecting File > Load Restore
Point in the advisor.

For details, see Convert a Subsystem to a Referenced Model.

The Simulink.SubSystem.convertToModelReference function supports the Model
Reference Conversion Advisor capabilities.

Reduced algebraic loops during model reference simulation

Model reference simulation now addresses some cases that previously resulted in
algebraic loops.

Multi-instance support for nonreusable functions in referenced models

Simulation of nonreusable functions in referenced models no longer forces you to set the
Configuration Parameters > Model Referencing > Total number of instances
allowed per top model parameter to One. You can also set the parameter to Multiple.

Model referencing checks in Model Advisor to reduce warning messages

The Model Advisor includes two new checks to reduce the number of warning messages
during simulation and code generation. These checks replace the Configuration
Parameters > Diagnostics > Model Referencing > Model configuration mismatch
diagnostic, which generated many warning messages that you could safely ignore.

• The Check diagnostic settings ignored during accelerated model reference
simulation check lists models referenced in Accelerator mode for which you set
certain runtime diagnostics to a value other than none or Disable all.

Simulink ignores the diagnostics that the check lists. For more information, see
Certain Diagnostic Configuration Parameters Ignored for Models Referenced in
Accelerator Mode.

6-10

http://www.mathworks.com/help/releases/R2015a/simulink/ug/converting-a-subsystem-to-a-referenced-model.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/simulink.subsystem.converttomodelreference.html
http://www.mathworks.com/help/releases/R2015a/simulink/ug/model-referencing-limitations.html#bul8zlu
http://www.mathworks.com/help/releases/R2015a/simulink/ug/model-referencing-limitations.html#bul8zlu

 Component-Based Modeling

• The Check code generation identifier formats used for model reference
check lists referenced models with certain parameters whose settings do not contain
a $R token (which represents the name of the reference model). Code generation
prepends the $R token (if not present) to the identifier format. For more information,
see Configuration Parameters Changed During Code Generation.

Compatibility Considerations

The Model configuration mismatch diagnostic no longer appears in the
Configuration Parameters > Diagnostics > Model Referencing pane. Simulink
ignores the setting of the corresponding ModelReferenceCSMismatchMessage
parameter.

• When loading a configuration set from a MAT-file or a model, if the parameter setting
is either error or warning, the setting is not honored and remains none.

• When you save a configuration set to a MAT-file or save a model to disk, the
parameter is not saved.

• When you export a model to a previous version, the parameter is written to disk with
a setting of none.

• If you use get_param with this parameter on a configuration set or on a model, the
returned value is always the default value (none).

• If you use a set_param command for this parameter on a configuration set or on a
model with a setting other than none, Simulink ignores the setting.

Model configuration parameter changes

The following configuration parameters are no longer supported and are not saved in the
model configuration:

• CodeGenDirectory (Simulink Coder)
• ConfigAtBuild (Simulink Coder)
• ConfigurationMode (Simulink Coder)
• ConfigurationScript (Simulink Coder)
• CustomRebuildMode (Simulink Coder)
• DataInitializer (Simulink Coder)
• Echo

• EnableOverflowDetection

6-11

http://www.mathworks.com/help/releases/R2015a/simulink/ug/model-referencing-limitations.html#bul8zrp-1

R2015a

• FoldNonRolledExpr

• GenerateClassInterface(Simulink Coder)
• GenerateCodeInfo (Simulink Coder)
• IncludeERTFirstTime (Simulink Coder)
• InitialValueSource (Embedded Coder)
• MisraCompliance (Embedded Coder)
• ModuleName (Embedded Coder)
• ModuleNamingRule (Embedded Coder)
• ProcessScript (Simulink Coder)
• ProcessScriptMode (Simulink Coder)
• SimBlas

• SimDataInitializer

• SimExtrinsic

• TargetTypeEmulationWarnSuppressLevel

• UseTempVars

In R2014b, these configuration parameters were command-line only parameters and
were not available in the Configuration Parameters dialog box.

Compatibility Considerations

• When you save a configuration set to a MAT-file or save a model to disk, these
parameters are NOT saved.

• If you use a set_param command with one of these parameters on a configuration set
or on a model, the value of the parameter is only changed while the model is loaded in
the current MATLAB session.

• If you use a get_param command with one of these parameters on a configuration set
or on a model, the behavior is unchanged.

Property name change in Simulink.ConfigSetRef

The WSVarName property of the Simulink.ConfigSetRef object has been renamed
to SourceName. The SourceName property specifies the name of the variable in the
workspace or the data dictionary that contains the referenced configuration set. The
WSVarName will be removed in a future release.

6-12

 Component-Based Modeling

Compatibility Considerations

To avoid future incompatibility, change instances of this property name to the new name.

Flexible structure assignment of buses

When a non-tunable structure is assigned to a bus signal (such as a block which uses a
structure for its initial condition parameter), the data types of the fields of the structure
no longer need to match the data types of the bus elements. The software now performs
an automatic casting of the data type of the structure field so that it matches the data
type of the bus signal.

Support for empty subsystems as variant choices

Previously, if you added an empty subsystem with no inputs or outputs as a variant
choice inside a Variant Subsystem block, Simulink discarded the empty subsystem.
This is because empty variant choices were considered invalid. Moreover, if the Variant
Subsystem block contained a valid variant choice and an empty variant choice, no
preprocessor conditionals were generated for the valid choice when you built the model.

In R2015a, Simulink considers an empty subsystem as a valid variant choice. If you add
an empty variant choice inside a Variant Subsystem block, specify a variant condition for
this choice in one of the following ways.

• Specify a variant activation condition for the empty choice. During simulation, if the
empty variant choice is active, Simulink ignores the empty choice.

• Comment out the variant activation condition by placing a % symbol before the
condition.

Moreover, if the Variant Subsystem block contains a valid variant choice and an empty
variant choice, preprocessor conditionals are now generated for the valid choice when you
build the model.

For an example, see Define, Configure, and Activate Variant Choices.

Conversion of MATLAB variables used in variant control expressions into
Simulink.Parameter objects

MATLAB variables allow you to rapidly prototype variant control expressions when
you are building your model. Previously, if you wanted to generate preprocessor

6-13

http://www.mathworks.com/help/releases/R2015a/simulink/ug/define-and-configure-variants.html

R2015a

conditionals for code generation, you had to manually convert these variables into
Simulink.Parameter objects.

In R2015a, use the function Simulink.VariantManager.findVariantControlVars
to find and convert MATLAB variables used in variant control expressions into
Simulink.Parameter objects. For an example, see Convert Variant Control Variables
into Simulink.Parameter Objects.

6-14

http://www.mathworks.com/help/releases/R2015a/simulink/ug/switching-between-variants.html#bupgigd-1
http://www.mathworks.com/help/releases/R2015a/simulink/ug/switching-between-variants.html#bupgigd-1

 Project and File Management

Project and File Management

Simulink Project Sharing: Share a project using GitHub, email, or a
MATLAB toolbox

Release 2015a provides new options for sharing Simulink projects:

• Make your project publicly available on GitHub®.
• Share your project via email.
• Package your project as a MATLAB toolbox.

For details, see Sharing Simulink Projects.

Interactively manage the MATLAB search path for your project

You can interactively add or remove folders from the project path. With Simulink Project,
opening your project adds the project path to the MATLAB search path. Closing your

6-15

http://www.mathworks.com/help/releases/R2015a/simulink/ug/sharing-simulink-projects.html

R2015a

project removes the project path from the MATLAB search path. For more information,
see Specify Project Path.

Easy viewing and editing of project labels

R2015a provides easier management of label data through the improved file details view.

For more information, see:

• Create Labels
• Add Labels to Files
• View and Edit Label Data

Changed file lists and branch deletion in Git Manage Branches dialog
box

In R2015a, when using Git source control, you can view branch details and delete
branches in the Manage Branches dialog box. You can see which files changed for a
particular commit in the branch viewer, and view the author, date, and commit message.

6-16

http://www.mathworks.com/help/releases/R2015a/simulink/ug/specify-project-path.html
http://www.mathworks.com/help/releases/R2015a/simulink/ug/create-labels.html
http://www.mathworks.com/help/releases/R2015a/simulink/ug/add-labels-to-files.html
http://www.mathworks.com/help/releases/R2015a/simulink/ug/view-and-edit-label-data.html

 Project and File Management

For details, see Branch and Merge Files with Git.

New preferences to control loading and saving models

Simulink has a new preference, Do not load models that are shadowed on the
MATLAB path. Use the preference to specify whether to load a model that is shadowed
by another file of the same name higher on the MATLAB path. If you turn the preference
on by selecting the check box, then Simulink displays an error when you try to load a
shadowed model. For details, see Do not load models that are shadowed on the MATLAB
path.

6-17

http://www.mathworks.com/help/releases/R2015a/simulink/ug/branch-and-merge-files.html
http://www.mathworks.com/help/releases/R2015a/simulink/gui/simulink-preferences-window-main-pane.html#bunq1bp-1
http://www.mathworks.com/help/releases/R2015a/simulink/gui/simulink-preferences-window-main-pane.html#bunq1bp-1

R2015a

Another preference, Do not load models created with a newer version of
Simulink, is now on by default. These preferences help you avoid accidentally loading or
editing the wrong model or library.

You can use a new preference, Save a thumbnail image inside SLX files to control
whether to save a small screen shot image of the model. You can view the screenshot
for a selected model in the Current Folder browser preview pane. If your model is very
large and you want to reduce the time taken to save the model, then you can turn this
preference off to avoid saving thumbnail model images.

Compatibility Considerations

The preference Do not load models created with a newer version of Simulink is
now on by default. Simulink does not the load the model and displays an error message
in the Command Window. In previous releases, the preference was off by default, so
Simulink loaded models last saved in a newer version and displayed a warning message.

Improved error reporting from get_param, set_param and save_system

The functions get_param, set_param and save_system have improved error reporting
to help you correct problems specifying the correct model or block. The new messages tell
you if the model is not loaded, the model name is not valid, or the block is not found in
the specified model.

Model dependency analysis option to find enumeration definition files

In R2015a, model dependency analysis provides an option to search for enumeration
definition files. Turn on this option to detect enumerated data types used as part of a bus
object definition. You can then include the files when exporting the model and required
files into a zip file.

The option is not on by default because it requires a model update. You cannot perform
this search with project impact analysis, because the search requires model updates.
Instead, select Analysis > Model Dependencies > Generate Manifest, and turn on
the Find enumeration definition files (performs a Model Update) option.

For details, see Generate Manifests.

6-18

http://www.mathworks.com/help/releases/R2015a/simulink/ug/model-dependencies.html#bq2ik30

 Project and File Management

Export to previous version supports seven years

In R2015a, in the Export to Previous Version dialog box, the Save as type list includes
seven years of previous releases. In future releases, this list will continue to provide
seven years of previous releases.

In previous releases, the list included versions back to R14 (2004). If you want to export
to older versions than seven years, you can use the save_system function instead. For
details, see save_system.

6-19

http://www.mathworks.com/help/releases/R2015a/simulink/slref/save_system.html

R2015a

Data Management

Data Dictionary API: Automate the creation and editing of data
dictionaries with MATLAB scripts

You can now manage data dictionaries and interact with dictionary content at the
MATLAB command prompt in addition to the Model Explorer. For example, you can:

• Migrate models to use data dictionaries
• Import data from and export data to external files and the MATLAB base workspace
• Create, delete, and reassign entries
• Save and discard changes to entire dictionaries or discard changes to individual

entries
• Search for specific entries
• Compose reference dictionary hierarchies

See Store Data in Dictionary Programmatically for examples and a list of relevant
functions and classes.

Rename All: Change the name of a parameter and all its references

You can now use Model Explorer to rename a variable everywhere it is used by blocks in
a Simulink model.

See Rename Variables for an example.

MATLAB Editor features for editing model workspace code

When you view the dialog box for a model workspace, for example using the property
dialog pane of Model Explorer, and set Data source to MATLAB Code, the code editing
area now behaves like the MATLAB Editor. For example, the editing area applies syntax
highlighting to your code.

Management of variables from block dialog box fields

You can now navigate to and edit variables by right-clicking expressions that you
specify in block dialog boxes. For each variable in an expression, you can navigate to the
workspace that defines the variable or open a separate dialog box to edit the variable.

6-20

http://www.mathworks.com/help/releases/R2015a/simulink/ug/store-data-in-dictionary-programmatically.html
http://www.mathworks.com/help/releases/R2015a/simulink/ug/the-model-explorer-working-with-workspace-variables.html#buod58x

 Data Management

You can also create variables by right-clicking an expression that contains the names
of potential variables. For each name you specify in the expression, you can create a
variable in a workspace that is appropriate for the model.

See Manage Variables from Block Parameter for more information.

Other Data section added to data dictionary

To store reference data that are not used by a model for simulation, but that are still
relevant to the model, use the Other Data section of a data dictionary. For example, if a
model simulates the behavior of mechanical equipment, you can store the manufacturer
specifications in the Other Data section.

You can also store objects of any MATLAB or Simulink class, including custom classes, in
the Other Data section of a dictionary. By contrast, the Design Data section stores only
objects relevant to simulation of a model.

Data dictionaries now have a Design Data section, a Configurations section, and an
Other Data section. Prior to R2015a, the Design Data section was named Global Design
Data.

Model-wide renaming of data stores

You can now rename a data store everywhere it is used by Data Store Read and Data
Store Write blocks in a Simulink model. Previously, you manually updated all Data Store
Read and Data Store Write blocks with the new name of the data store.

See Rename Data Stores for more information.

Reporting of enumerated types used by model

You can now use the existing function Simulink.findVars to discover the enumerated
data types that are needed by a model. Simulink.findVars can report the names of
enumerated types that are used to define model variables.

You can enable the reporting of enumerated types using the name-value pair
IncludeEnumTypes. With this name-value pair enabled, Simulink.findVars returns
a Simulink.VariableUsage object for each enumerated type in addition to the
Simulink.VariableUsage objects returned for model variables.

6-21

http://www.mathworks.com/help/releases/R2015a/simulink/ug/manage-variables-from-block-parameter-dialog.html
http://www.mathworks.com/help/releases/R2015a/simulink/ug/rename-data-stores.html

R2015a

Root Inport Mapping tool updates

The Root Inport Mapping tool now supports:

• Models configured for Fast Restart.
• Importing and mapping of Simulink Design Verifier test vectors. For more

information, see Import Test Vectors from Simulink Design Verifier Environment.

6-22

http://www.mathworks.com/help/releases/R2015a/simulink/ug/import-and-map-data-to-root-level-inports.html#buhkt4_

 Connection to Educational Hardware

Connection to Educational Hardware

Simulink Support Package for Apple iOS Devices: Create an App that
runs Simulink models and algorithms on your Apple iOS device

You can run Simulink models on Apple iOS devices. You can also tune parameter values
in the model, and receive data from the model, while it is running on these devices.

Use the Simulink Support Package for Apple iOS Devices block library to access
the Apple iOS hardware:

• Accelerometer
• Audio Capture
• Audio Playback
• Camera
• Display
• FromApp
• Gyroscope
• Location Sensor
• ToApp
• UDP Receive
• UDP Send

To install or update this support package, perform the steps described in Install Support
for Apple iOS Devices.

MathWorks response to the Shellshock vulnerability

The support package for BeagleBoard (v14.2) contains a vulnerable version of the Bash
shell. The default configuration of this support package does not expose this vulnerability
to a network connection. We recommend running this device inside of a trusted network
or behind a firewall. We will update this package as updated software is available.

For more information, see http://mathworks.com/matlabcentral/answers/158586-what-is-
mathworks-response-to-the-shellshock-vulnerability.

6-23

http://www.mathworks.com/help/releases/R2015a/supportpkg/ios/ref/accelerometer.html
http://www.mathworks.com/help/releases/R2015a/supportpkg/ios/ref/audiocapture.html
http://www.mathworks.com/help/releases/R2015a/supportpkg/ios/ref/audioplayback.html
http://www.mathworks.com/help/releases/R2015a/supportpkg/ios/ref/camera.html
http://www.mathworks.com/help/releases/R2015a/supportpkg/ios/ref/display.html
http://www.mathworks.com/help/releases/R2015a/supportpkg/ios/ref/fromapp.html
http://www.mathworks.com/help/releases/R2015a/supportpkg/ios/ref/gyroscope.html
http://www.mathworks.com/help/releases/R2015a/supportpkg/ios/ref/locationsensor.html
http://www.mathworks.com/help/releases/R2015a/supportpkg/ios/ref/toapp.html
http://www.mathworks.com/help/releases/R2015a/supportpkg/ios/ref/udpreceive.html
http://www.mathworks.com/help/releases/R2015a/supportpkg/ios/ref/udpsend.html
http://www.mathworks.com/help/releases/R2015a/supportpkg/ios/ug/install-support-for-apple-ios-devices.html
http://www.mathworks.com/help/releases/R2015a/supportpkg/ios/ug/install-support-for-apple-ios-devices.html
http://mathworks.com/matlabcentral/answers/158586-what-is-mathworks-response-to-the-shellshock-vulnerability
http://mathworks.com/matlabcentral/answers/158586-what-is-mathworks-response-to-the-shellshock-vulnerability

R2015a

Removed support for Gumstix Overo and PandaBoard hardware

The following support packages have been removed and are no longer available:

• Simulink Support Package for Gumstix® Overo® Hardware
• Simulink Support Package for PandaBoard Hardware

6-24

 Signal Management

Signal Management

Array of buses with Unit Delay block

You can use an array of buses as an input signal to a Unit Delay block.

6-25

http://www.mathworks.com/help/releases/R2015a/simulink/slref/unitdelay.html

R2015a

Block Enhancements

Resettable Subsystem block to reset the subsystem states

The Resettable Subsystem block is a new block in the Ports & Subsystems library. Use
this subsystem to reset the states of all blocks inside the subsystem on triggering. For
more information, see Resettable Subsystem.

Conditional display of the Sample Time parameter

The Sample Time parameter in the dialog box of certain Simulink blocks is now hidden
by default. If you set the sample time to a value other the default (at the command line
or if it is set that way in an existing model), then the parameter is visible. For more
information, see Blocks for Which Sample Time Is Not Recommended.

Inheritance of frame-based input returns error

Note: This release note applies only if you have installed DSP System Toolbox.

As part of general product-wide changes pertaining to frame-based processing, certain
block options that use the frame attribute of the input signal now cause an error in
Simulink. For more information on changes in the DSP System Toolbox, see Frame-based
processing.

The following sections provide more detailed information about the specific R2015a
Simulink software changes for frame-based processing:

• “Input Processing Parameter Set to Inherited” on page 6-27
• “Inherited Setting on Save 2-D Signals” on page 6-28
• “Frame-based Inputs Removed for Bias Block” on page 6-28
• “Frame-based Inputs Removed for Tapped Delay Block” on page 6-29
• “Frame-based Input Removed for Transfer Fcn First Order Block” on page 6-29
• “Frame-based Input Removed for Transfer Fcn Lead or Lag Block” on page 6-29
• “Sampling Mode Set to Frame-based” on page 6-30

6-26

http://www.mathworks.com/help/releases/R2015a/simulink/slref/resettablesubsystem.html
http://www.mathworks.com/help/releases/R2015a/simulink/ug/sampletimehiding.html
http://www.mathworks.com/help/releases/R2015a/dsp/release-notes.html#buo14sy-1
http://www.mathworks.com/help/releases/R2015a/dsp/release-notes.html#buo14sy-1

 Block Enhancements

Input Processing Parameter Set to Inherited

Setting Input processing parameter to Inherited now errors for these blocks:

• Relay
• Backlash
• Difference
• Delay
• Unit Delay
• Variable Integer Delay
• Discrete Derivative
• Tapped Delay
• Transfer Fcn Real Zero
• Detect Increase
• Detect Decrease
• Detect Change
• Detect Rise Positive
• Detect Rise Nonnegative
• Detect Fall Negative
• Detect Fall Nonpositive

Compatibility Considerations

To ensure consistent results for models created in previous releases, set Input
processing to:

• Columns as channels (frame based), for frame-based input signals (double-
line)

• Elements as channels (sample based), for sample-based signal input signals
(single-line)

If you are not sure of which option to choose, select and run the Simulink Upgrade
Advisor checks:

• Check model for block upgrade issues requiring compile time

information

6-27

http://www.mathworks.com/help/releases/R2015a/simulink/slref/relay.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/backlash.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/difference.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/delay.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/unitdelay.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/variableintegerdelay.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/discretederivative.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/tappeddelay.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/transferfcnrealzero.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/detectincrease.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/detectdecrease.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/detectchange.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/detectrisepositive.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/detectrisenonnegative.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/detectfallnegative.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/detectfallnonpositive.html

R2015a

• Check model for custom library blocks that rely on frame status of

the signal, for blocks in a custom library

Inherited Setting on Save 2-D Signals

In the To Workspace block, setting the Save Format parameter to Structure or Array
and the Save 2-D signals as parameter to Inherit from input now causes an error.

Compatibility Considerations

To ensure consistent results for models created in previous releases, set Save 2-D
signals as to

• 3-D array (concatenate along third dimension), for sample-based input signals
• 2-D array (concatenate along first dimension), for frame-based input signals

For models created in R2015a:

• For frame-based processing, set Save 2-D signals as to 2-D array (concatenate
along first dimension).

• For sample-based processing, set Save 2-D signals as to 3-D array (concatenate
along third dimension).

If you are not sure of which option to choose, run these Simulink Upgrade Advisor
checks:

• Check model for block upgrade issues requiring compile time

information

• Check model for custom library blocks that rely on frame status of

the signal, for blocks in a custom library

Frame-based Inputs Removed for Bias Block

Frame-based input support is removed from the Bias block.

Compatibility Considerations

To ensure consistent results for models created in older releases,

1 Change the block input to sample based by inserting a Frame Conversion block with
Sampling mode of output signal set to Sample-based.

6-28

http://www.mathworks.com/help/releases/R2015a/simulink/slref/toworkspace.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/bias.html
http://www.mathworks.com/help/releases/R2015a/dsp/ref/frameconversion.html

 Block Enhancements

2 Insert a Frame Conversion block at the output of the block with Sampling mode set
to Frame based.

3 Set the bias parameter of the block to repmat(b, N, 1), where b is the value of the
bias, and N is the input frame length.

Frame-based Inputs Removed for Tapped Delay Block

Frame-based input support is removed from the Tapped Delay block.

Compatibility Considerations

To ensure consistent results for models created in older releases, replace the Tapped
Delay block by a Unit Delay block with Input Processing set to Columns as
channels (frame based).

Frame-based Input Removed for Transfer Fcn First Order Block

Frame-based signal support is removed from the Transfer Fcn First Order block.

Compatibility Considerations

To ensure consistent results for models created in older releases:

1 Replace the Transfer Fcn First Order block with a Discrete Transfer Fcn block.
2 In the Discrete Transfer Fcn block, set Input Processing to Columns as

channels (frame based).
3 Set Numerator, Denominator and Initial Condition of the new block to [1-p

0], [1 -p] and ic/(1-p), respectively, where p is the value of the pole and ic is
the value of the initial condition on the Transfer Fcn First Order block.

Frame-based Input Removed for Transfer Fcn Lead or Lag Block

Frame-based input support is removed from the Transfer Fcn Lead or Lag block.

Compatibility Considerations

To ensure consistent results for models created in older releases:

6-29

http://www.mathworks.com/help/releases/R2015a/dsp/ref/frameconversion.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/tappeddelay.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/tappeddelay.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/tappeddelay.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/unitdelay.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/transferfcnfirstorder.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/transferfcnfirstorder.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/discretetransferfcn.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/discretetransferfcn.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/transferfcnfirstorder.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/transferfcnleadorlag.html

R2015a

1 Replace the Transfer Fcn Lead or Lag block by a Discrete Filter block.
2 In the Discrete Filter block, set Input Processing to Columns as channels

(frame based) and Filter Structure to Direct form I.
3 Set Numerator and Denominator of the new block to [1 -z] and [1 -p],

respectively, where p is the value of the pole and z is the value of the zero on the
Transfer Fcn Lead or Lag block.

Sampling Mode Set to Frame-based

Setting Sampling Mode parameter to Frame based now errors for these blocks:

• Inport
• Signal Specification
• Outport

Compatibility Considerations

To ensure consistent results for models created in older releases, set Sampling Mode to
Sample based or Auto instead.

If you are not sure of which option to choose, select and run the Simulink Upgrade
Advisor checks:

• Check model for block upgrade issues requiring compile time

information

• Check model for custom library blocks that rely on frame status of

the signal, for blocks in a custom library

Scope block to Time Scope Block conversion

You can convert a Scope block to a Time Scope block to try the new block. On the Scope

toolbar, click the Try Time Scope button . The Scope block converts to a Time Scope
block. For Floating Scopes, this button is disabled (grayed out).

The Time Scope block includes simulation controls (run, forward, backward), additional
support for signals (sample-based, frame-based), and debugging tools such as Cursors
and Triggers. See Migrate Scope To Time Scope.

6-30

http://www.mathworks.com/help/releases/R2015a/simulink/slref/transferfcnleadorlag.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/discretefilter.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/discretefilter.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/transferfcnleadorlag.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/inport.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/signalspecification.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/outport.html
http://www.mathworks.com/help/releases/R2015a/simulink/ug/convert-scope-block-to-time-scope-block.html

 Block Enhancements

Option to provide PID gains as external inputs to PID Controller and PID
controller (2DOF) blocks

A new option in the PID Controller and PID Controller (2DOF) blocks adds signal
inputs for the PID gains and filter coefficients. Previously the PID parameters had to be
entered in the block dialog box as numerical values or MATLAB expressions. Enabling
external inputs for the parameters allows you to compute PID gains and filter coefficients
externally to the block and provide them to the block as signal inputs. External gain
input is useful, for example, to implement gain-scheduled PID control, in which controller
gains are determined by logic or other calculation in the Simulink model and passed to
the block. To enable external inputs for the PID coefficients, in the block dialog box, in
the Controller parameters section, in the Source menu, select external.

When you click OK or Apply, the new inputs appear on the block in the Simulink model.

6-31

R2015a

For more information about using the PID controller blocks, see the PID Controller and
PID Controller (2 DOF) block reference pages.

Improvements for creating System objects

The following improvements have been made to creating your own System objects:

• Number of allowable code generation inputs increased to 32
• isInputSizeLockedImpl method for specifying whether the input port dimensions

are locked
• matlab.system.display.Action class, used in the getPropertyGroupsImpl

method, to define a MATLAB System block button that can call a System object
method

• getSimulateUsingImpl and showSimulateUsingImpl methods to set the value
of the SimulateUsing parameter and specify whether to show the SimulateUsing
parameter in the MATLAB System block

MATLAB System block support for model coverage analysis

The Simulink Verification and Validation software now supports model coverage
analysis for the MATLAB System block with the Simulate using parameter set to Code
generation. For more information, see MATLAB System Block Limitations.

Enable port on the Delay block

The Delay block now provides an enable port to control its execution at every time step.
You can show this port using the Show enable port parameter in the block dialog box.
For more information, see the Delay block reference page.

6-32

http://www.mathworks.com/help/releases/R2015a/simulink/slref/pidcontroller.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/pidcontroller2dof.html
http://www.mathworks.com/help/releases/R2015a/simulink/slref/matlabsystem.html
http://www.mathworks.com/help/releases/R2015a/simulink/ug/what-is-matlab-system-block.html#btyrdmk
http://www.mathworks.com/help/releases/R2015a/simulink/slref/delay.html

 MATLAB Function Blocks

MATLAB Function Blocks

More efficient generated code for logical indexing

Code generated for logical array indexing is faster and uses less memory than in previous
releases. For example, the generated code for the following function is more efficient than
in previous releases.

function x = foo(x,N)

assert(all(size(x) == [1 100]))

x(x>N) = N;

In R2015a, you do not have to replace x(x>N) = N with a for-loop to improve
performance.

Faster compile time for large functions and models due to decreased
constant folding limit

When possible, the code generation software replaces an expression with the result of the
expression evaluation. This practice is called constant folding. In R2015a, the maximum
number of instructions that the code generation software constant folds is lower than in
previous releases. The lower constant folding limit can reduce compile times for large
functions and models.

Compatibility Considerations

For large functions or models, it is possible that some expressions that were constant-
folded in previous releases are not constant-folded in R2015a. In these cases, the
generated code contains the expressions rather than the results of the evaluated
expressions.

JIT compilation technology to reduce model update time

MATLAB Function block uses just-in-time (JIT) compilation technology to improve model
update of many MATLAB Function blocks. For these blocks, Simulink does not generate
C code or a MEX-file to simulate the block. Simulink applies JIT mode to MATLAB
Function blocks that qualify. You do not have to enable it.

6-33

R2015a

When a MATLAB Function block uses JIT mode, debugging is disabled. To debug,
set a breakpoint in the MATLAB Function block before simulation. Simulink enables
debugging, and does not use JIT mode.

Compatibility Considerations

By default, the software uses JIT mode on MATLAB Function blocks to speed up
compilation time. When a block uses JIT mode, debugging is disabled. During simulation,
you cannot set a breakpoint. If you set a breakpoint before simulation begins, the
software enables debugging. You no longer directly enable or disable debugging with
Enable debugging/animation on the Simulation Target pane of the Configuration
Parameters dialog box or menu option.

In previous releases, if you set the command-line parameter SFSIMEnableDebug, the
software enabled debugging for the model. Now, setting this parameter prevents the
block from using JIT mode. Do not set this parameter if you want to improve model
update performance using JIT mode.

Some MATLAB Function blocks do not qualify for JIT mode, such as blocks that
integrate custom C code. In these cases, the software defaults to MEX-file generation
with debugging enabled. For optimal simulation performance for these blocks, turn off
debugging by using this command.

sfc('coder_options', 'forceDebugOff', 1);

After you run this command, these blocks do not have debugging or run-time error
checking.

Code generation for casts to and from types of variables declared using
coder.opaque

For code generation, you can use the MATLAB cast function to cast a variable to or from
a variable that is declared using coder.opaque. Use cast with coder.opaque only for
numeric types.

To cast a variable declared by coder.opaque to a MATLAB type, you can use the B =
cast(A,type) syntax. For example:

x = coder.opaque('size_t','0');

x1 = cast(x, 'int32');

6-34

 MATLAB Function Blocks

You can also use the B = cast(A,'like',p) syntax. For example:

x = coder.opaque('size_t','0');

x1 = cast(x, 'like', int32(0));

To cast a MATLAB variable to the type of a variable declared by coder.opaque, you
must use the B = cast(A,'like',p) syntax. For example:

x = int32(12);

x1 = coder.opaque('size_t', '0');

x2 = cast(x, 'like', x1));

Use cast with coder.opaque to generate the correct data types for:

• Inputs to C/C++ functions that you call using coder.ceval.
• Variables that you assign to outputs from C/C++ functions that you call using

coder.ceval.

Without this casting, it is possible to receive compiler warnings during code generation.

Consider this MATLAB code:

yt = coder.opaque('size_t', '42');

yt = coder.ceval('foo');

y = cast(yt, 'int32');

• coder.opaque declares that yt has C type size_t.
• y = cast(yt, 'int32') converts yt to int32 and assigns the result to y.

Because y is a MATLAB numeric type, you can use y as you would normally use a
variable in your MATLAB code.

The generated code looks like:

size_t yt= 42;

int32_T y;

y = (int32_T)yt;

It is possible that the explicit cast in the generated code prevents a compiler warning.

Improved recognition of compile-time constants

In previous releases, the code generation software recognized that structure fields or
array elements were constant only when all fields or elements were constant. In R2015a,

6-35

R2015a

in some cases, the software can recognize constant fields or constant elements even when
some structure fields or array elements are not constant.

For example, consider the following code. Field s.a is constant and field s.b is not
constant:

function y = create_array(x)

s.a = 10;

s.b = x;

y = zeros(1, s.a);

In previous releases, the software did not recognize that field s.a was constant. In the
generated code, if variable-sizing was enabled, y was a variable-size array. If variable-
sizing was disabled, the code generation software reported an error. In R2015a, the
software recognizes that s.a is a constant. y is a static row vector with 10 elements.

As a result of this improvement, you can use individual assignments to assign constant
values to structure fields. For example:

function y = mystruct(x)

s.a = 3;

s.b = 4;

y = zeros(s.a,s.b);

In previous releases, the software recognized the constants only if you defined the
complete structure using the struct function: For example:

function y = mystruct(x)

s = struct('a', 3, 'b', 4);

y = zeros(s.a,s.b);

In some cases, the code generation software cannot recognize constant structure fields or
array elements. See Code Generation for Constants in Structures and Arrays.

Compatibility Considerations

The improved recognition of constant fields and elements can cause the following
differences between code generated in R2015a and code generated in previous releases:

• A function output can be more specific in R2015a than it was in previous releases. An
output that was complex in previous releases can be real in R2015a. An array output
that was variable-size in previous releases can be fixed-size in R2015a.

6-36

http://www.mathworks.com/help/releases/R2015a/simulink/ug/code-generation-for-constants-in-arrays-and-structures.html

 MATLAB Function Blocks

• Some branches of code that are present in code generated using previous releases are
eliminated from the generated code in R2015a.

Code generation for additional Image Processing Toolbox and Computer
Vision System Toolbox functions

Image Processing Toolbox

• bweuler
• bwlabel
• bwperim
• regionprops
• watershed

See Image Processing Toolbox.

Computer Vision System Toolbox

• opticalFlow
• vision.DeployableVideoPlayer on Mac platform.

In previous releases, vision.DeployableVideoPlayer supported code generation
on Linux® and Windows platforms. In R2015a, vision.DeployableVideoPlayer
also supports code generation on a Mac platform.

See Computer Vision System Toolbox.

Code generation for additional Communications System Toolbox, DSP
System Toolbox, and Phased Array System Toolbox System objects

Communications System Toolbox

• comm.CarrierSynchronizer
• comm.FMBroadcastDemodulator
• comm.FMBroadcastModulator
• comm.FMDemodulator
• comm.FMModulator

6-37

http://www.mathworks.com/help/releases/R2015a/images/ref/bweuler.html
http://www.mathworks.com/help/releases/R2015a/images/ref/bwlabel.html
http://www.mathworks.com/help/releases/R2015a/images/ref/bwperim.html
http://www.mathworks.com/help/releases/R2015a/images/ref/regionprops.html
http://www.mathworks.com/help/releases/R2015a/images/ref/watershed.html
http://www.mathworks.com/help/releases/R2015a/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bsl0arh-1
http://www.mathworks.com/help/releases/R2015a/vision/ref/opticalflow-class.html
http://www.mathworks.com/help/releases/R2015a/vision/ref/vision.deployablevideoplayer-class.html
http://www.mathworks.com/help/releases/R2015a/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bsmvmqi-1
http://www.mathworks.com/help/releases/R2015a/comm/ref/comm.carriersynchronizer-class.html
http://www.mathworks.com/help/releases/R2015a/comm/ref/comm.fmbroadcastdemodulator-class.html
http://www.mathworks.com/help/releases/R2015a/comm/ref/comm.fmbroadcastmodulator-class.html
http://www.mathworks.com/help/releases/R2015a/comm/ref/comm.fmdemodulator-class.html
http://www.mathworks.com/help/releases/R2015a/comm/ref/comm.fmmodulator-class.html

R2015a

• comm.SymbolSynchronizer

See Communications System Toolbox.

DSP System Toolbox

• iirparameq
• dsp.LowpassFilter
• dsp.HighpassFilter

See DSP System Toolbox.

Phased Array System Toolbox

• pilotcalib
• phased.UCA
• phased.MFSKWaveform

See Phased Array System Toolbox.

Code generation for additional Statistics and Machine Learning Toolbox
functions

• betafit
• betalike
• pca
• pearsrnd

See Statistics and Machine Learning Toolbox.

Code generation for additional MATLAB functions

Linear Algebra

• bandwidth
• isbanded
• isdiag

6-38

http://www.mathworks.com/help/releases/R2015a/comm/ref/comm.symbolsynchronizer-class.html
http://www.mathworks.com/help/releases/R2015a/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bsl_qz1-1
http://www.mathworks.com/help/releases/R2015a/dsp/ref/iirparameq.html
http://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.lowpassfilter-class.html
http://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.highpassfilter-class.html
http://www.mathworks.com/help/releases/R2015a/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bt7ln6w
http://www.mathworks.com/help/releases/R2015a/phased/ref/pilotcalib.html
http://www.mathworks.com/help/releases/R2015a/phased/ref/phased.uca-class.html
http://www.mathworks.com/help/releases/R2015a/phased/ref/phased.mfskwaveform-class.html
http://www.mathworks.com/help/releases/R2015a/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bt1pnss
http://www.mathworks.com/help/releases/R2015a/stats/betafit.html
http://www.mathworks.com/help/releases/R2015a/stats/betalike.html
http://www.mathworks.com/help/releases/R2015a/stats/pca.html
http://www.mathworks.com/help/releases/R2015a/stats/pearsrnd.html
http://www.mathworks.com/help/releases/R2015a/simulink/ug/functions-supported-for-code-generation--categorical-list.html#btwz3ma
http://www.mathworks.com/help/releases/R2015a/matlab/ref/bandwidth.html
http://www.mathworks.com/help/releases/R2015a/matlab/ref/isbanded.html
http://www.mathworks.com/help/releases/R2015a/matlab/ref/isdiag.html

 MATLAB Function Blocks

• istril
• istriu
• lsqnonneg

See Linear Algebra in MATLAB.

Statistics in MATLAB

• cummin
• cummax

See Statistics in MATLAB.

Code generation for additional MATLAB function options

• dimension option for cumsum and cumprod

See Functions and Objects Supported for C and C++ Code Generation — Alphabetical
List.

6-39

http://www.mathworks.com/help/releases/R2015a/matlab/ref/istril.html
http://www.mathworks.com/help/releases/R2015a/matlab/ref/istriu.html
http://www.mathworks.com/help/releases/R2015a/matlab/ref/lsqnonneg.html
http://www.mathworks.com/help/releases/R2015a/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bsiy6ab
http://www.mathworks.com/help/releases/R2015a/matlab/ref/cummin.html
http://www.mathworks.com/help/releases/R2015a/matlab/ref/cummax.html
http://www.mathworks.com/help/releases/R2015a/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bq1h2z8-30
http://www.mathworks.com/help/releases/R2015a/matlab/ref/cumsum.html
http://www.mathworks.com/help/releases/R2015a/matlab/ref/cumprod.html
http://www.mathworks.com/help/releases/R2015a/simulink/ug/functions-supported-for-code-generation--alphabetical-list.html
http://www.mathworks.com/help/releases/R2015a/simulink/ug/functions-supported-for-code-generation--alphabetical-list.html

R2015a

Model Advisor

Multiple instances of advisors

Model Advisor infrastructure changes allow you to save analysis time. To prepare for
advisor analysis, you can open and configure:

• Different advisors on the same model
• The same advisor on different models

However, you can run the analysis for only one advisor at time.

Advisors More information

Model Advisor Consulting the Model Advisor
Performance Advisor How Performance Advisor Improves

Simulation Performance
Upgrade Advisor Consult the Upgrade Advisor
Model Reference Conversion Advisor Convert a Subsystem to a Referenced

Model
Code Generation Advisor – Available with
Simulink Coder

High-Level Code Generation Objectives

Fixed-Point Advisor – Available with
Fixed-Point Designer

Fixed-Point Advisor

HDL Workflow Advisor – Available with
HDL Coder

HDL Workflow Advisor

Simulink Code Inspector™ Compatibility
Checker – Available with Simulink Code
Inspector

Model Compatibility

Improved advisor startup performance

Model Advisor infrastructure changes have improved secondary startup performance of
these advisors.

Advisors More information

Model Advisor Consulting the Model Advisor

6-40

http://www.mathworks.com/help/releases/R2015a/simulink/ug/consult-the-model-advisor.html
http://www.mathworks.com/help/releases/R2015a/simulink/ug/consult-the-performance-advisor.html
http://www.mathworks.com/help/releases/R2015a/simulink/ug/consult-the-performance-advisor.html
http://www.mathworks.com/help/releases/R2015a/simulink/ug/consult-the-upgrade-advisor.html
http://www.mathworks.com/help/releases/R2015a/simulink/ug/converting-a-subsystem-to-a-referenced-model.html
http://www.mathworks.com/help/releases/R2015a/simulink/ug/converting-a-subsystem-to-a-referenced-model.html
http://www.mathworks.com/help/releases/R2015a/rtw/ug/application-objectives.html#bs1ed4n
http://www.mathworks.com/help/releases/R2015a/fixedpoint/ug/fixed-point-advisor.html
http://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/matlab-hdl-coder-workflow-advisor.html
http://www.mathworks.com/help/releases/R2015a/slci/model-preparation.html
http://www.mathworks.com/help/releases/R2015a/simulink/ug/consult-the-model-advisor.html

 Model Advisor

Advisors More information

Performance Advisor How Performance Advisor Improves
Simulation Performance

Upgrade Advisor Consult the Upgrade Advisor
Model Reference Conversion Advisor Convert a Subsystem to a Referenced

Model
Code Generation Advisor – Available with
Simulink Coder

High-Level Code Generation Objectives

Fixed-Point Advisor – Available with
Fixed-Point Designer

Fixed-Point Advisor

HDL Workflow Advisor – Available with
HDL Coder

HDL Workflow Advisor

Simulink Code Inspector Compatibility
Checker – Available with Simulink Code
Inspector

Model Compatibility

Model Advisor check input parameters retained for each instance of
check

For Model Advisor checks with input parameters, instances of the check retain the
input parameters that you enter. When you run the check, the results reflect the
input parameter for that instance of the check. Previously, when you entered an input
parameter for a check, all instances of the check were updated with the value you
entered.

Model referencing checks in Model Advisor to reduce warning messages

The Model Advisor includes two new checks to reduce the number of warning messages
during simulation and code generation. These checks replace the Configuration
Parameters > Diagnostics > Model Referencing > Model configuration mismatch
diagnostic, which generated many warning messages that you could safely ignore. For
details, see “Model referencing checks in Model Advisor to reduce warning messages” on
page 6-10 in the “Component-Based Modeling” section of these release notes.

6-41

http://www.mathworks.com/help/releases/R2015a/simulink/ug/consult-the-performance-advisor.html
http://www.mathworks.com/help/releases/R2015a/simulink/ug/consult-the-performance-advisor.html
http://www.mathworks.com/help/releases/R2015a/simulink/ug/consult-the-upgrade-advisor.html
http://www.mathworks.com/help/releases/R2015a/simulink/ug/converting-a-subsystem-to-a-referenced-model.html
http://www.mathworks.com/help/releases/R2015a/simulink/ug/converting-a-subsystem-to-a-referenced-model.html
http://www.mathworks.com/help/releases/R2015a/rtw/ug/application-objectives.html#bs1ed4n
http://www.mathworks.com/help/releases/R2015a/fixedpoint/ug/fixed-point-advisor.html
http://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/matlab-hdl-coder-workflow-advisor.html
http://www.mathworks.com/help/releases/R2015a/slci/model-preparation.html

R2015a

Compatibility Considerations

The Model configuration mismatch diagnostic no longer appears in the
Configuration Parameters > Diagnostics > Model Referencing pane. Simulink
ignores the setting of the corresponding ModelReferenceCSMismatchMessage
parameter. For details, see “Model referencing checks in Model Advisor to reduce
warning messages” on page 6-10 in the “Component-Based Modeling” section of these
release notes.

6-42

R2014b
Version: 8.4

New Features

Bug Fixes

Compatibility Considerations

R2014b

Simulink Editor

Smart Editing Cues: Accelerate model building with just-in-time contextual
prompts

The Simulink Editor provides several new model editing options that:

• Allow you to edit a model from within the diagram, without opening separate dialog
boxes from a menu

• Provide editing options based on the context of your most recent editing operations

Add and Configure a Block without Leaving a Diagram

You can add a block to a model by typing a block name in a new Simulink Editor quick
insert interface. You can perform a quick insert in several ways. For example, to add a
Gain block and set the Gain parameter to 3, here is one approach:

1 Left-click in an empty space in the diagram, near where you want to add the Gain
block.

2 Type “ga”.

A list of blocks beginning with “ga” appears.

3 The Gain block appears first in the list, so just press Enter.

A Gain block appears in the diagram.
4 In the hot parameter edit box, enter a gain of 3.

7-2

 Simulink Editor

The hot parameter edit box allows you to enter a value for one parameter per block that
you add using the quick insert feature.

For more information, see Add Blocks Using Quick Insert.

Insert a Complementary Block

You can insert a complementary block for the following blocks from within the canvas.

• GoTo and From
• Data Store Read and Data Store Write

For example, to add a From block associated with GoTo block in a model, hover over the
GoTo block

1 Hover over the GoTo block.
2 Click and drag the blue tear-off guide.

Perform Actions on a Marquee Selection

You can perform the following actions on a marquee selection (multiple selected objects
in an area of a model), without leaving the canvas.

• Create a subsystem
• Create a triggered, enabled, or function-call subsystem
• Comment or uncomment the selected blocks

To select an action, hover over the blue action button. For example, to create a subsystem
from the selected blocks, click the Create Subsystem button.

7-3

http://www.mathworks.com/help/releases/R2014b/simulink/ug/add-blocks-using-quick-insert.html

R2014b

Connect Aligned Blocks Using a Guide

When you align the ports of two blocks, blue guide lines appear. Release the mouse
button. Some blue guide lines remain. You can click a remaining blue guide line to
connect blocks.

Viewmarks: Save graphical views of a model for quick access to areas of
interest

You can create and manage viewmarks, which are bookmarks to parts of a model. Use
viewmarks to capture graphical views of a model or parts of a model. You can capture
viewmarks for specific levels in a model hierarchy. You can also pan and zoom in a
displayed system, to capture the specific portion of interest.

Some examples of ways you can use viewmarks include:

• Navigate to different levels of complex models without opening multiple Simulink
Editor tabs or windows.

• Review model designs
• Visually compare different versions of a model.

You can manage your viewmarks for all models in a single gallery of viewmarks,
organized by model.

For more information, see Use Viewmarks to Save Views of Models.

7-4

http://www.mathworks.com/help/releases/R2014b/simulink/ug/create-and-manage-model-snapshots-viewmarks.html

 Simulink Editor

Annotation Connectors: Associate annotations with blocks in models

You can add blue connector lines between an annotation and a block. The connector is
similar to a callout, identifying the block that an annotation applies to. As you move the
annotation or block to which the connector attaches, Simulink redraws the connector. For
more information, see Add Lines to Connect Annotations to Blocks.

When you create an annotation, by default the annotation appears in the model. You can
now configure an annotation so that you can choose to hide that annotation. This allows
you to include annotations that provide additional information about a model without
cluttering the model.

To configure an annotation so that you can hide it:

1 Right-click the annotation.
2 In the context menu, select Convert to Markup.

By default, all annotations appear in the model. To hide annotations that are converted
to markup, select Display > Hide Markup.

R2014b includes two new set_param and get_param parameters relating to showing
and hiding annotations:

• MarkupType — specifies whether an annotation can be hidden ('markup') or always
appears ('model')

• ShowMarkupType — Specifies whether to display markup annotations ('on') or hide
them ('off').

For more information, see Show or Hide Annotations.

Edit bar for quick annotation formatting

When you click in an annotation, the Simulink Editor now displays an annotation edit
bar. Click an edit bar button to format an annotation without having to open a menu.
Types of formatting you can do include:

• Make text bold or italic
• Enlarge or shrink the font size
• Center text

7-5

http://www.mathworks.com/help/releases/R2014b/simulink/ug/add-lines-to-connect-annotations-to-blocks.html
http://www.mathworks.com/help/releases/R2014b/simulink/ug/show-or-hide-annotations.html

R2014b

Annotation table column and row resizing

In an annotation, you can interactively resize table columns or rows by dragging a table
column or row border.

Reuse of annotation text formatting

You can copy the formatting from one piece of annotation text to other text in the same
annotation, using Format Painter button in the annotation edit bar. For details, see
Copy Formatting.

Annotation layering

You can specify whether an annotation appears in front of or behind other annotations.
(Annotations always appear behind blocks.)

To display an annotation in front of another annotation, use the following steps.

1 Do a marquee selection (bounding box) that includes the annotation that you want to
appear in front.

2 Select the Diagram > Arrange > Front menu option.

Access Diagnostic Viewer from status bar

When you update, simulate, or build a model, the status bar at the bottom of the
Simulink Editor displays the total number of diagnostics generated. If these diagnostics
are in the form of warnings or information, Simulink does not bring the Diagnostic
Viewer into focus so that you can continue developing your model. When you are ready to
diagnose warnings or view information, click the link displayed in the status bar to bring
the Diagnostic Viewer into focus.

Printing to file

When you use the Print Model dialog box and select Print To File, the default file
format is now PDF instead of the previous default of Postscript. Exporting to PDF
generally makes it easier to share models with other people.

The default file name is now the name of the system you exported, which makes it easier
to tell which system is in a file. Previously, Simulink generated a file name that did not
reflect the system name.

7-6

http://www.mathworks.com/help/releases/R2014b/simulink/ug/annotations.html#bufyxjq

 Simulation Analysis and Performance

Simulation Analysis and Performance

Fast Restart: Run consecutive simulations more quickly

Fast Restart is a new simulation workflow that eliminates the need for compiling a
model repeatedly in iterative simulations. In this mode, the model compiles only in the
first iteration. Simulink uses this compile information for successive runs, so there is no
need to recompile. You can tune parameters or root-level inputs between runs as long as
there are no structural changes to the model. This saves you time spent on recompiling
and improves overall simulation efficiency.

Use Fast Restart to tune parameters in a model iteratively, calibrate a system for a
desired response, or run multiple simulations in which the compile time is comparable
to simulation time. For more information, see How Fast Restart Improves Iterative
Simulations.

New Simulation Data Inspector: View live signal data and access
visualization options such as data cursors

You can now view a signal in the Simulation Data Inspector during model simulation.
This is especially helpful for workflows that involve debugging and optimizing a model.
For more information, see Stream Data to the Simulation Data Inspector.

The Simulation Data Inspector now supports Simscape simulation output and includes
new visualization options, such as data cursors, which help you inspect signal values in
the Simulation Data Inspector plot.

Fixed Point Support for Conditional Breakpoints

Signals of fixed point data type now support conditional breakpoints based on the
converted double value.

Quick Scan simulation in Performance Advisor for faster diagnosis

The Quick Scan feature in Performance Advisor helps you analyze a model quickly to
deliver an approximate analysis of suboptimal conditions or settings in the model. Quick
Scan does not require any preset conditions, and you can run it anytime. Using this

7-7

http://www.mathworks.com/help/releases/R2014b/simulink/ug/how-fast-restart-improves-iterative-simulations.html
http://www.mathworks.com/help/releases/R2014b/simulink/ug/how-fast-restart-improves-iterative-simulations.html
http://www.mathworks.com/help/releases/R2014b/simulink/ug/stream-data-to-the-simulation-data-inspector.html

R2014b

feature, you can get a preview of potential performance improvement changes in a model
without performing baseline measurement, multiple compilations, or simulations. See
Perform a Quick Scan Diagnosis for more information.

Removal of warning when variable-step solver is selected for discrete
models

When you simulate a discrete model with a variable-step solver, Simulink automatically
switches the solver selection from Variable-step continuous (default) to Variable-
step discrete. When doing so, Simulink no longer displays a warning about the
switch, even if you have set Diagnostics > Automatic solver parameter selection to
warning in the Model Configuration Parameters dialog box.

Block callbacks not evaluated in Rapid Accelerator mode with up-to-date
check off

Previously, when you simulated a model in Rapid Accelerator mode with the
RapidAcceleratorUpToDateCheck parameter set to off, Simulink evaluated the
start and stop callbacks of the model and the blocks. Starting in R2014b, when the
RapidAcceleratorUpToDateCheck parameter is set to off, Simulink evaluates only
the model start and stop callbacks.

Functionality Being Removed or Changed

Functionality What Happens
When You Use This
Functionality?

Use This Instead Compatibility
Considerations

slupdate Warns Use the Upgrade
Advisor instead.

slupdate will
be removed in a
future release. The
slupdate command
can only upgrade
some parts of your
model. Use the
Upgrade Advisor
instead. See Model
Upgrades.

7-8

http://www.mathworks.com/help/releases/R2014b/simulink/ug/preliminary-setup_bug3r1n-6.html
http://www.mathworks.com/help/releases/R2014b/simulink/model-upgrades.html
http://www.mathworks.com/help/releases/R2014b/simulink/model-upgrades.html

 Simulation Analysis and Performance

Improvements to Scope blocks and Scope viewers

Enhancements to viewing signals.

Scope blocks:

• Allow scrolling of signals to the left
• Supports fast restart

Floating Scope blocks:

• New Log/Unlog Viewed Signals to Workspace button on the Scope Parameters
> History pane to set the Log signal data check boxes for attached signals

• Supports simulation stepping
• Supports fast restart
• Support for legends
• Ability to change line properties, axes, and figure colors.

Scope Viewers:

• Includes all the enhancements for Floating Scope blocks
• Supports the Dataset format for the Signal Logging format parameter in the

Configuration Parameters > Data Import/Export pane.
• The functionality for the removed Floating Scope viewer is now included with Scope

viewers.

See Scope and Floating Scope, Scope Viewer Tasks, Signal Selector.

7-9

http://www.mathworks.com/help/releases/R2014b/simulink/slref/scope.html
http://www.mathworks.com/help/releases/R2014b/simulink/ug/signal-viewer-tasks.html
http://www.mathworks.com/help/releases/R2014b/simulink/ug/signal-selector.html

R2014b

Component-Based Modeling

Model Templates: Build models using design patterns that serve as
starting points to solve common problems

Model templates enable reuse of settings and sharing of knowledge. Create models
from templates to encourage best practices and take advantage of previous solutions to
common problems. Instead of the blank canvas of a new model, select a template to help
you get started.

Use built-in templates or create templates from models that you already configured for
your environment or application.

For details, see Create a New Model.

Simulink Functions: Create and call functions across Simulink and
Stateflow

The Simulink Function block serves as a starting point for implementing functions using
Simulink blocks. Simulink Function responds to the Function Caller block or to a call
from Stateflow using a provided function prototype.

The Function Caller block, using a provided function prototype, invokes a function
implementation, such as the Simulink Function block, or a Stateflow exported chart
function.

Interface Display: View and trace the input and output signals of a model
or subsystem

For Simulink models, the Interface feature helps you to understand and manage your
model interfaces. You can start with the input and output connections at the edge of
the model diagram and examine signal paths going in and coming out of a component.
You can trace individual signals, buses, and elements of a bus to learn their uses in
the model. The feature also displays characteristics of the inputs and outputs, such as
dimensions, port data types, and sample times. Select Display > Interface in your
Simulink model to turn on this display.

7-10

http://www.mathworks.com/help/releases/R2014b/simulink/ug/create-a-new-model.html

 Component-Based Modeling

Model reference conversion enhancements

In R2014b, the Model Reference Conversion Advisor and the
Simulink.SubSystem.convertToModelReference function provide new automatic fix
options for converting a subsystem in a model that meets either of these conditions.

• The model contains a Data Store Memory block that Data Store Read or Data Store
Write blocks access across the subsystem boundaries.

• The top model uses tunable parameters.

The Simulink.SubSystem.convertToModelReference function has a new
PropagateSignalStorageClass argument. Set that argument to true to have the
conversion propagate the signal storage class. For example:

open_system('sldemo_mdlref_conversion');

Simulink.SubSystem.convertToModelReference(gcb,'test_model',...

'PropagateSignalStorageClass',true)

Compatibility Considerations

The automatic fix for Data Store Memory blocks creates Simulink.Signal objects and
redirects Data Store Read and Data Store Write blocks to access those signal objects. The
automatic fix for tunable parameters creates Simulink.Parameter objects for tunable
parameters.

The conversion process creates data. Conversion data that the top model and the
new referenced model share is saved in the data dictionary, if the top model uses one.
Otherwise, the data is saved in a MAT-file.

• If the top model does not use a data dictionary, the conversion stores the data in a
MAT-file whose name uses this format: <model_name>_conversion_data.mat.

• If the model has callbacks or if you have scripts that rely on the previous variable
names and locations, load the <model_name>_conversion_data.mat file before
running the callbacks or scripts.

• If the top model uses a data dictionary, the conversion action depends on the state of
the data dictionary.

• If the data dictionary does not need to be saved, the conversion stores the data in
the data dictionary.

7-11

http://www.mathworks.com/help/releases/R2014b/simulink/slref/simulink.subsystem.converttomodelreference.html

R2014b

• If the data dictionary needs to be saved, the conversion does not save the data. You
need to save the data dictionary when the conversion is complete.

Include Simulink Models as Variant Choices

Previously, you could only include subsystems as variant choices inside a Variant
Subsystem block. If you wanted to include a model as a variant choice, you had to first
wrap the model inside a Subsystem block and then include the subsystem block as the
variant choice.

In R2014b, you can include a Simulink model as a variant choice inside a Variant
Subsystem block without wrapping the model inside a Subsystem block.

You cannot include a Model block that contains variants inside a Variant Subsystem
block. When you attempt this inclusion, Simulink suggests converting the Model block
into a Subsystem block.

For example, consider a model block called IntelligentController that has two
variants: FuzzyLogicController and KalmanFilterController. If you add this
block inside a Variant Subsystem block, Simulink converts the model into a subsystem
containing two model blocks: one representing FuzzyLogicController and the other,
KalmanFilterController.

For more information, see Define, Configure, and Activate Variant Choices.

Arithmetic and Bit-Wise Operators in Variant Condition Expressions

In R2014b, you can use arithmetic and bit-wise operators in variant condition
expressions, provided the expressions evaluate to a Boolean value.

For a list of supported operators, see Operators and Operands in Variant Condition
Expressions.

Export of chart-level functions in export-function models

In R2014b, you can export graphical functions in Stateflow charts residing in export-
function models. For more information, see Export Stateflow Functions for Reuse.

7-12

http://www.mathworks.com/help/releases/R2014b/simulink/ug/define-and-configure-variants.html
http://www.mathworks.com/help/releases/R2014b/simulink/ug/switching-between-variants.html#bt_5z2b-4
http://www.mathworks.com/help/releases/R2014b/simulink/ug/switching-between-variants.html#bt_5z2b-4
http://www.mathworks.com/help/releases/R2014b/stateflow/ug/exporting-functions-for-reuse-in-other-charts.html

 Project and File Management

Project and File Management

Block Dependencies in Impact Graph: Highlight the blocks affected by
changes made to project files

Perform fine-grained dependency analysis using the Impact graph in Simulink Project.
The Impact graph now displays which blocks have dependencies. For example, to find the
impact of modifying a library, you can find design and test files dependencies. You can
then expand the dependent files to see which subsystems have dependencies. You can
view dependent blocks, models and libraries, and double-click to highlight the blocks in
the models.

Other improvements in dependency analysis tools:

• Impact graph items now have popups when you mouse over a file, so that you can
read the text and expand files without needing to change the zoom.

• Line routing in the graph is improved to reduce line crossings and make it easier to
interpret large projects.

• Dependency and Impact analysis views have new toolstrips with reorganized tools to
fit common workflows. The toolstrips enable discovery of tools previously hidden in
context menus.

• You can now exclude external toolboxes from dependency analysis, which can avoid
time-consuming analysis.

For details, see Perform Impact Analysis.

Identify modified or conflicted folder contents using source control
summary status

In Simulink Project, folders now display rolled-up source control status. This makes
it easier to locate changes in files, particularly conflicted files. You can hover over the
source control status for a folder to view a tooltip displaying how many files inside are
modified, conflicted, added or deleted.

For details, see View Modified Files and Resolve Conflicts.

7-13

http://www.mathworks.com/help/releases/R2014b/simulink/ug/perform-impact-analysis.html
http://www.mathworks.com/help/releases/R2014b/simulink/ug/view-modified-files.html
http://www.mathworks.com/help/releases/R2014b/simulink/ug/resolve-conflicts.html

R2014b

Simplified file views in Simulink Project

In Simulink Project, the file views are simplified to combine the All files and Project Files
nodes. You can find all files in the Files view, and use a filter if you only want to display
files in the project. You can use drag and drop to add, move, and remove files from the
project.

The source control and project information nodes are also combined to simplify the
project tree.

For details of all these views, see Try Simulink Project Tools with the Airframe Project.

Simplified browsing and sharing of project templates

Simulink Project now discovers templates using the MATLAB path. This enables simpler
browsing and sharing of templates. You no longer need to import templates or manage a
separate template path. If a colleague emails you a template, you can use it by placing it
in the current folder or elsewhere on the MATLAB path. The template manager has been
removed. You can still access all your existing templates using the Add Template dialog
when creating a project.

For details, see Create a New Project Using Templates.

SVN and Git example Simulink Projects

Try out source control features using new SVN and Git example Simulink Projects:

sldemo_slproject_airframe_svn

sldemo_slproject_airframe_git

For details, see Try Simulink Project Tools with the Airframe Project.

7-14

http://www.mathworks.com/help/releases/R2014b/simulink/ug/try-simulink-project-tools-with-the-airframe-project.html
http://www.mathworks.com/help/releases/R2014b/simulink/ug/create-a-new-project-using-templates.html
http://www.mathworks.com/help/releases/R2014b/simulink/ug/try-simulink-project-tools-with-the-airframe-project.html

 Data Management

Data Management

Root Import Mapping tool

The Root Import Mapping tool has been updated. In addition to a new user interface, the
tool lets you:

• Import signals from base workspace, MAT-files, and Microsoft Excel (Windows
systems only) files

• Export signals
• Visualize signals
• Save and import scenarios
• Create new scenarios

For more information, see Import and Map Root-Level Inport Data.

Compatibility Considerations

The Root Import Mapping tool no longer accepts data in the time expression format.

Minimize and maximize buttons for the Configuration Parameters dialog
box

You can minimize and maximize the Configuration Parameters dialog box using buttons
on the title bar.

Overflow diagnostics to distinguish between wrap and saturation

You can now separately control the diagnostics for overflows that wrap and overflows
that saturate by setting each diagnostic to error, warning, or none. These controls
simplify debugging models in which only one type overflow is of interest. For example,
if you need to detect only overflows that wrap, in the Data Validity pane of the
Configuration Parameters dialog box you can set Wrap on overflow to error or
warning, and set Saturate on overflow to none.

7-15

http://www.mathworks.com/help/releases/R2014b/simulink/ug/import-and-map-data-to-root-level-inports.html

R2014b

Change in behavior of isequaln

Previously, when you used function isequaln to compare two Simulink data objects, the
function compared only the handles of the two objects. This behavior was incorrect and
did not conform to the intended behavior of isequaln in MATLAB. Consider the following
example:

a = Simulink.Parameter;

b = Simulink.Parameter;

isequaln(a,b);

ans = false

Now, the behavior of isequaln has changed to conform to the behavior of isequaln in
MATLAB. Now, isequaln compares two Simulink data objects by comparing their
individual property values. Based on the above example, provided objects a and b have
the same property values, the new result will be as follows:

a = Simulink.Parameter;

b = Simulink.Parameter;

isequaln(a,b);

ans = true

Compatibility Considerations

If you are using the isequaln function in your MATLAB code to compare Simulink data
objects, check your code to ensure that it still works correctly.

Change in Simulink check for types derived from Simulink.IntEnumType

Previously, Simulink generated an error if any of the underlying values of a type derived
from Simulink.IntEnumType did not fit on the emulation target. This check is defined
by the configuration parameter TargetBitPerInt.

Now, Simulink generates an error if any of the underlying values of a type derived from
Simulink.IntEnumType do not fit on the production target. This check is defined by the
configuration parameter ProdBitPerInt.

Compatibility Considerations

Simulation errors can occur if any of the underlying values of types derived from
Simulink.IntEnumType do not fit on your production target, even if those values
previously fit on your emulation target.

7-16

http://www.mathworks.com/help/releases/R2014b/matlab/ref/isequaln.html
http://www.mathworks.com/help/releases/R2014b/matlab/ref/isequaln.html

 Data Management

Methods no longer inherited by Simulink enumerations

The base class Simulink.IntEnumType no longer defines these methods:

• getDescription

• getHeaderFile

• getDataScope

• addClassNameToEnumNames

You can define these methods in your enumeration classes, but classes derived from
Simulink.IntEnumType no longer inherit these methods.

Previously, you called these inherited methods at the command prompt to query
attributes of an enumerated type derived from Simulink.IntEnumType. For
example, you called the method getDefaultValue to query the default enumeration
member. Now, to query attributes of an enumerated type, you use the function
Simulink.data.getEnumTypeInfo.

The table shows how to use Simulink.data.getEnumTypeInfo, instead of the
methods, to query the attributes of an enumerated type BasicColors.

Previous method call New function call

BasicColors.getDescription Simulink.data.getEnumTypeInfo(...

'BasicColors','Description')

BasicColors.getHeaderFile Simulink.data.getEnumTypeInfo(...

'BasicColors','HeaderFile')

BasicColors.getDataScope Simulink.data.getEnumTypeInfo(...

'BasicColors','DataScope')

BasicColors.addClassNameToEnumNames Simulink.data.getEnumTypeInfo(...

'BasicColors','AddClassNameToEnumNames')

Compatibility Considerations

If you run MATLAB code that uses these previously inherited methods without
overriding them, MATLAB returns errors.

However, code that overrides these methods, as described in Customize Simulink
Enumeration, is unaffected.

7-17

http://www.mathworks.com/help/releases/R2014b/simulink/ug/defining-simulink-enumerations.html#brsebyf-1
http://www.mathworks.com/help/releases/R2014b/simulink/ug/defining-simulink-enumerations.html#brsebyf-1

R2014b

Connection to Educational Hardware

More Arduino Support: Run your model on Arduino Leonardo, Mega
ADK, Mini, Fio, Pro, Micro and Esplora boards

Updates to Simulink Support Package for Arduino Hardware: You can run your model on
Arduino Leonardo, Mega ADK, Mini, Fio, Pro, Micro, and Esplora boards.

Documentation installation with hardware support package

Starting in R2014b, each hardware support package installs with its own documentation.
See Simulink Supported Hardware for a list of support packages available for Simulink,
with links to documentation.

7-18

http://www.mathworks.com/help/releases/R2014b/simulink/ug/simulink-supported-hardware.html

 Signal Management

Signal Management

Signal name inheritance from bus object elements

For a Bus Creator block that specifies a bus object, you can now have bus signal names
inherit signal names from the corresponding element names in the bus object. To inherit
signal names from bus element names, clear the new Override bus signal names from
inputs check box. This approach:

• Enforces strong data typing.
• Avoids your having to enter a signal name multiple times. Without this option, you

need to enter the signal names in the bus object and in the model, which can lead to
accidentally creating signal name mismatches.

• Supports the array of buses requirement to have consistent signal names across array
elements.

The Bus Creator block parameters dialog box has been reorganized to group related
parameters. For details, see the Bus Creator block reference page.

Compatibility Considerations

In R2014b, if you open a model created before R2014b that uses a bus object for the
output data type, clearing the Override bus signal names from inputs parameter
might require you to change the model because:

• A signal name in a downstream Bus Selector or Bus Assignment block might no
longer be the same.

Change any selected signal names in the Bus Selector or Bus Assignment block dialog
boxes that do not match the corresponding bus object element names.

• Signal names in signal logging data might change.

Update scripts to reflect signal logging signal names that match the corresponding
bus object names.

Faster and more flexible Simulink.Bus.createMATLABStruct function

If you use the Simulink.Bus.createMATLABStruct function repeatedly for the same
model (for example, in a loop in a script), you can now improve performance by avoiding

7-19

http://www.mathworks.com/help/releases/R2014b/simulink/slref/buscreator.html
http://www.mathworks.com/help/releases/R2014b/simulink/slref/simulink.bus.creatematlabstruct.html

R2014b

multiple model compilations. For improved speed, put the model in compile before using
the function multiple times.

Also, you can now use a cell array of bus object names as an input argument for the
function.

7-20

 Block Enhancements

Block Enhancements

Nearest interpolation method available for n-D Lookup Table Block

The 1-D Lookup Table, 2-D Lookup Table, and n-D Lookup Table blocks have the option
to select Nearest for interpolation methods.

MATLAB System block updates

The MATLAB System block:

• Can now be contained in a For Each Subsystem block. The new
supportsMultipleInstanceImpl method enables using System objects in Simulink For
Each subsystems. Include this method in your System object class definition file when
you define a new kind of Simulink. For more information, see System Objects in For
Each Subsystems.

• The New > Block Extension option has been renamed to New > Simulink
Extension.

Level-1 MATLAB S-Functions

Support for Level-1 MATLAB S-Functions will be removed in a future release.

Compatibility Considerations

For information on alternatives to creating custom blocks, see Comparison of Custom
Block Functionality.

Unfiltered-derivative option in discrete-time PID Controller blocks

You can now specify an unfiltered derivative term in the discrete-time PID Controller
and PID Controller (2DOF) blocks. Previously, these blocks required a finite derivative
filter constant on the derivative term.

To specify an unfiltered derivative, in the Main pain of the block dialog box, uncheck
Use filtered derivative. Unchecking this option replaces the derivative filter with
a Discrete Derivative block. The option is checked by default for compatibility with
previous versions.

7-21

http://www.mathworks.com/help/releases/R2014b/simulink/slref/matlabsystem.html
http://www.mathworks.com/help/releases/R2014b/simulink/slref/foreachsubsystem.html
http://www.mathworks.com/help/releases/R2014b/simulink/slref/matlab.system.supportsmultipleinstanceimpl.html
http://www.mathworks.com/help/releases/R2014b/simulink/ug/system-objects-in-matlab-system-block.html#bufck35
http://www.mathworks.com/help/releases/R2014b/simulink/ug/system-objects-in-matlab-system-block.html#bufck35
http://www.mathworks.com/help/releases/R2014b/simulink/ug/comparison-of-custom-block-functionality.html
http://www.mathworks.com/help/releases/R2014b/simulink/ug/comparison-of-custom-block-functionality.html

R2014b

MATLAB Function Blocks

Code generation for additional Image Processing Toolbox and Computer
Vision System Toolbox functions

Image Processing Toolbox

bwdist imadjust intlut ordfilt2
bwtraceboundary imclearborder iptcheckmap rgb2ycbcr
fitgeotrans imlincomb medfilt2 stretchlim
histeq imquantize multithresh ycbcr2rgb

For the list of Image Processing Toolbox functions supported for code generation, see
Image Processing Toolbox.

Computer Vision System Toolbox

vision.DeployableVideoPlayer on Linux.

For the list of Computer Vision System Toolbox functions supported for code generation,
see Computer Vision System Toolbox.

Code generation for additional Communications System Toolbox and DSP
System Toolbox functions and System objects

Communications System Toolbox

• iqcoef2imbal
• iqimbal2coef
• comm.IQImbalanceCompensator

For the list of Communications System Toolbox™ functions supported for code
generation, see Communications System Toolbox.

DSP System Toolbox

• dsp.CICCompensationDecimator

7-22

http://www.mathworks.com/help/releases/R2014b/images/ref/bwdist.html
http://www.mathworks.com/help/releases/R2014b/images/ref/imadjust.html
http://www.mathworks.com/help/releases/R2014b/images/ref/intlut.html
http://www.mathworks.com/help/releases/R2014b/images/ref/ordfilt2.html
http://www.mathworks.com/help/releases/R2014b/images/ref/bwtraceboundary.html
http://www.mathworks.com/help/releases/R2014b/images/ref/imclearborder.html
http://www.mathworks.com/help/releases/R2014b/images/ref/iptcheckmap.html
http://www.mathworks.com/help/releases/R2014b/images/ref/rgb2ycbcr.html
http://www.mathworks.com/help/releases/R2014b/images/ref/fitgeotrans.html
http://www.mathworks.com/help/releases/R2014b/images/ref/imlincomb.html
http://www.mathworks.com/help/releases/R2014b/images/ref/medfilt2.html
http://www.mathworks.com/help/releases/R2014b/images/ref/stretchlim.html
http://www.mathworks.com/help/releases/R2014b/images/ref/histeq.html
http://www.mathworks.com/help/releases/R2014b/images/ref/imquantize.html
http://www.mathworks.com/help/releases/R2014b/images/ref/multithresh.html
http://www.mathworks.com/help/releases/R2014b/images/ref/ycbcr2rgb.html
http://www.mathworks.com/help/releases/R2014b/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bsl0arh-1
http://www.mathworks.com/help/releases/R2014b/vision/ref/vision.deployablevideoplayer-class.html
http://www.mathworks.com/help/releases/R2014b/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bsmvmqi-1
http://www.mathworks.com/help/releases/R2014b/comm/ref/iqcoef2imbal.html
http://www.mathworks.com/help/releases/R2014b/comm/ref/iqimbal2coef.html
http://www.mathworks.com/help/releases/R2014b/comm/ref/comm.iqimbalancecompensator-class.html
http://www.mathworks.com/help/releases/R2014b/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bsl_qz1-1
http://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.ciccompensationdecimator-class.html

 MATLAB Function Blocks

• dsp.CICCompensationInterpolator
• dsp.FarrowRateConverter
• dsp.FilterCascade

You cannot generate code directly from this System object. You can use the
generateFilteringCode method to generate a MATLAB function. You can
generate C/C++ code from this MATLAB function.

• dsp.FIRDecimator for transposed structure
• dsp.FIRHalfbandDecimator
• dsp.FIRHalfbandInterpolator
• dsp.PeakToPeak
• dsp.PeakToRMS
• dsp.PhaseExtractor
• dsp.SampleRateConverter
• dsp.StateLevels

For the list of DSP System Toolbox functions and System objects supported for code
generation, see DSP System Toolbox.

Code generation for ode23 and ode45 ordinary differential equation
solvers in MATLAB

• ode23
• ode45
• odeget
• odeset

See Numerical Integration and Differentiation in MATLAB.

Code generation for additional MATLAB functions

Data and File Management in MATLAB

• feof
• frewind

7-23

http://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.ciccompensationinterpolator-class.html
http://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.farrowrateconverter-class.html
http://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.filtercascade-class.html
http://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firdecimator-class.html
http://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firhalfbanddecimator-class.html
http://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firhalfbandinterpolator-class.html
http://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.peaktopeak-class.html
http://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.peaktorms-class.html
http://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.phaseextractor-class.html
http://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.samplerateconverter-class.html
http://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.statelevels-class.html
http://www.mathworks.com/help/releases/R2014b/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bt7ln6w
http://www.mathworks.com/help/releases/R2014b/matlab/ref/ode23.html
http://www.mathworks.com/help/releases/R2014b/matlab/ref/ode45.html
http://www.mathworks.com/help/releases/R2014b/matlab/ref/odeget.html
http://www.mathworks.com/help/releases/R2014b/matlab/ref/odeset.html
http://www.mathworks.com/help/releases/R2014b/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bt_7raz-1
http://www.mathworks.com/help/releases/R2014b/matlab/ref/feof.html
http://www.mathworks.com/help/releases/R2014b/matlab/ref/frewind.html

R2014b

See Data and File Management in MATLAB.

Linear Algebra in MATLAB

• ishermitian
• issymmetric

See Linear Algebra in MATLAB.

String Functions in MATLAB

str2double

See String Functions in MATLAB.

Code generation for additional MATLAB function options

• 'vector' and 'matrix' eigenvalue options for eig
• All output class options for sum and prod
• All output class options for mean except 'native' for integer types
• Multidimensional array support for flipud, fliplr, and rot90
• Dimension to operate along option for circshift

See Functions and Objects Supported for C and C++ Code Generation — Alphabetical
List.

Code generation for enumerated types based on built-in MATLAB integer
types

In previous releases, enumerated types used in MATLAB Function blocks were based on
the Simulink.IntEnumType class. In R2014b, you can also base an enumerated type on
one of the following built-in MATLAB integer data types:

• int8

• uint8

• int16

• uint16

• int32

7-24

http://www.mathworks.com/help/releases/R2014b/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bttrqgn
http://www.mathworks.com/help/releases/R2014b/matlab/ref/ishermitian.html
http://www.mathworks.com/help/releases/R2014b/matlab/ref/issymmetric.html
http://www.mathworks.com/help/releases/R2014b/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bsiy6ab
http://www.mathworks.com/help/releases/R2014b/matlab/ref/str2double.html
http://www.mathworks.com/help/releases/R2014b/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bq1h2z8-31
http://www.mathworks.com/help/releases/R2014b/simulink/ug/functions-supported-for-code-generation--alphabetical-list.html
http://www.mathworks.com/help/releases/R2014b/simulink/ug/functions-supported-for-code-generation--alphabetical-list.html

 MATLAB Function Blocks

You can use the base type to control the size of the enumerated type in generated C and
C++ code. You can choose a base type to:

• Represent an enumerated type as a fixed-size integer that is portable to different
targets.

• Reduce memory usage.
• Interface to legacy code.
• Match company standards.

The base type determines the representation of the enumerated types in generated C
and C++ code. For the base type Simulink.IntEnumType, the code generation software
generates a C enumeration type. For example:

typedef enum {

 GREEN = 1,

 RED

} LEDcolor;

For the built-in integer base types, the code generation software generates a typedef
statement for the enumerated type and #define statements for the enumerated values.
For example:

typedef int16_T LEDcolor;

#define GREEN ((LEDcolor)1)

#define RED ((LEDcolor)2)

See Enumerated Types Supported in MATLAB Function Blocks.

Code generation for function handles in structures

You can now generate code for structures containing fields that are function handles. See
Function Handle Definition for Code Generation.

Collapsed list for inherited properties in code generation report

The code generation report displays inherited object properties on the Variables tab. In
R2014b, the list of inherited properties is collapsed by default.

7-25

http://www.mathworks.com/help/releases/R2014b/simulink/ug/enumerated-types-supported-in-matlab-function-blocks.html
http://www.mathworks.com/help/releases/R2014b/simulink/ug/how-working-with-function-handles-is-different-for-code-generation.html

R2014b

Model Advisor

New check for Unit Delay and Zero-Order Hold blocks that perform rate
transition

A new check in Model Advisor and Upgrade Advisor identifies Unit Delay and Zero-Order
Hold blocks that are used for rate transition between input and output signals. The check
prompts you to replace these blocks with actual Rate Transition blocks. The replacement
provides accurate information about block transfer rates and enables traceability. For
more information, see Check Unit Delay and Zero-Order Hold blocks for rate transition.

Highlighted configuration parameters from Model Advisor reports

When you click a link to a configuration parameter from a Model Advisor report, the
parameter is highlighted in the Configuration Parameters dialog box.

7-26

http://www.mathworks.com/help/releases/R2014b/simulink/slref/simulink-checks_bq6d4aa-1.html#budtzhv-1

R2014a
Version: 8.3

New Features

Bug Fixes

Compatibility Considerations

R2014a

Simulink Editor

Annotations with rich text, graphics, and hyperlinks

In addition to plain text and text formatted with TeX, annotations can now include:

• Rich text, which gives you the ability to format text and to add tables and lists, as you
would using Microsoft Word

• Images, either by copying and pasting or by importing a graphics file
• Hyperlinks to Web pages or other documents

For details, see Create an Annotation with a Link, Lists, and an Image.

Diagnostic Viewer to collect information, warnings, and error messages

In addition to displaying errors and warnings generated during simulation, the
Diagnostic Viewer now displays information at the time of update diagram and build.
The messages are displayed in a hierarchical structure within tabs for each model. For
details, see Manage Errors and Warnings

Compatibility Considerations

The diary function does not intercept messages, errors, warning, and information
transmitted to the Diagnostic Viewer.

Therefore, if you use the diary function to log messages, errors, warnings, and
information generated during model build and simulation, replace instances of diary with
sldiagviewer.diary in one of these ways.

• sldiagviewer.diary('filename','encoding'), where both filename and
encoding are optional arguments.

• The default value for filename is diary.txt in the current folder.
• A valid value for encoding is UTF-8. If you do not specify a value, the default

encoding value is set.
• The command toggles the logging state of the specified file.
• You can keep multiple log files active simultaneously.

8-2

http://www.mathworks.com/help/releases/R2014a/simulink/ug/create-an-annotation-with-a-link-lists-and-image.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/diagnose-simulation-errors.html
http://www.mathworks.com/help/releases/R2014a/matlab/ref/diary.html
http://www.mathworks.com/help/releases/R2014a/matlab/ref/diary.html
http://www.mathworks.com/help/releases/R2014a/matlab/ref/diary.html

 Simulink Editor

• sldiagviewer.diary('on') and sldiagviewer.diary('off') toggle the
logging state of the file specified in the last executed sldiagviewer.diary
command.

If no file was specified in the last command, the logging state of the default file is
toggled.

Option to bring contents of a hierarchical subsystem into the parent
subsystem with one click

You can now expand subsystem contents to flatten the model hierarchy. Expanding a
subsystem is useful when refactoring a model. Flattening a model hierarchy can be the
end result, or just one step in refactoring. For example, you could pull a set of blocks up
to the parent system by expanding the subsystem, deselect the blocks that you want to
leave in the parent, and then create a subsystem from the remaining selected blocks.

For details, see Expand Subsystem Contents.

Support for native OS touch gestures, such as pinch-to-zoom and
panning

MathWorks® supports the use of multitouch gestures for panning and zooming on the
Microsoft Windows with a Windows 7 certified or Windows 8 certified touch display.

• Zoom by spreading two fingers.
• Zoom in by pinching two fingers together.
• Pan by dragging two fingers.

Other supported Simulink platforms that also support multitouch gestures might also
support pan and zoom gestures, but MathWorks has not fully tested those platforms.

Operating system print options for models

The Print Model dialog box includes a Print using system dialog button that opens
the print dialog box for your operating system. The operating system print dialog box
provides printing options for models in addition to those that the Print Model dialog box
provides. For example, you can use the operating system print dialog box for double-sided
printing, color printing (if your print driver supports color printing), and nonstandard
paper sizes. For details, see Specify the Page Layout and Print Job.

8-3

http://www.mathworks.com/help/releases/R2014a/simulink/ug/expand-subsystem-contents-1.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/set-up-the-page.html

R2014a

Preference for line crossing style

By default, straight signal lines that cross each other but are not connected display a
slight gap before and after the vertical line where it intersects the horizontal line. You
can change the line crossing style to line hops or solid lines. Use Simulink Preferences
> Editor Defaults > Line crossing style. For details, see Line crossing style.

Scalable graphics output to clipboard for Macintosh

On Macintosh platforms, when you copy a model to the clipboard, Simulink now saves
the model in a scalable format, in addition to a bitmap format. When you paste from
the clipboard to an application, that application selects the format that best meets its
requirements. For details, see Export Models to Third-Party Applications.

Sliders, dials, and spinboxes available as parameter controls in masks

In this release, Simulink provides the capability to control mask parameters through
three additional widgets: sliders, dials, and spinboxes. For details, see Parameters &
Dialog Pane.

8-4

http://www.mathworks.com/help/releases/R2014a/simulink/gui/editor-defaults-pane.html#bt6ce6i-1
http://www.mathworks.com/help/releases/R2014a/simulink/ug/export-a-model-to-a-different-file-format.html
http://www.mathworks.com/help/releases/R2014a/simulink/gui/parameters-pane.html
http://www.mathworks.com/help/releases/R2014a/simulink/gui/parameters-pane.html

 Component-Based Modeling

Component-Based Modeling

Option to choose default variants

In R2014a, you can specify a default variant choice. If no other variant is active,
Simulink selects and uses the default choice.

For more information, see Set Default Variant.

Option to choose variants that differ in number of input and output ports

In this release, variant subsystems can have different numbers of inports and outports,
provided that they satisfy the following conditions:

• The inport names are a subset of the parent variant subsystem’s inport names.
• The outport names are a subset of the parent variant subsystem’s outport names.

During simulation, Simulink disables the inactive ports in a variant subsystem block.

Advisor-based workflow for converting subsystems to Model blocks

The new Model Reference Conversion Advisor simplifies the process of converting a
subsystem to a referenced model. The advisor includes Fix buttons to automatically
update the model for a successful conversion. After converting the subsystem, by default
the advisor automatically updates the model, removing the Subsystem block and adding
a Model block that references the newly created referenced model. For details, see
Convert a Subsystem to a Referenced Model.

The Simulink.SubSystem.convertToModelReference command now has a
UseConversionAdvisor argument, which opens the Model Reference Conversion
Advisor, and an AutoFix argument, which automatically fixes several kinds of
conversion issues.

Single-model workflow for algorithm partitioning and targeting of
multicore processors and FPGAs

You can use the concurrent execution dialog box to configure a model for concurrent
execution on heterogeneous targets.

8-5

http://www.mathworks.com/help/releases/R2014a/simulink/ug/set-and-open-active-variants.html#buaip7y
http://www.mathworks.com/help/releases/R2014a/simulink/ug/converting-a-subsystem-to-a-referenced-model.html
http://www.mathworks.com/help/releases/R2014a/simulink/slref/simulink.subsystem.converttomodelreference.html

R2014a

A new example has been added. Navigate to Simulink > Examples > Modeling
Features > Modeling Concurrency > Modeling Concurrent Execution on
Multicore Targets.

For a list of supported heterogeneous targets, see Supported Heterogeneous Targets.

Easier MATLAB System block creation via autocompletion and browsing
for System object names

The MATLAB System block dialog box has new browse and autocompletion capabilities
to specify the System object name. It also allows creation of new System objects from
templates.

Improved algebraic loop handling and reduced data copies with the Bus
Selector block

The Bus Selector block processing now reduces:

• Artificial algebraic loops involving nonvirtual buses
• Data copies during bus element selection
• The number of lines of generated code

Compatibility Considerations

The Bus Selector block performance enhancements result in these compatibility
considerations.

• Attaching a non-auto storage class at output of Bus Selector causes an error.

Workaround: Insert a Signal Conversion block after the Bus Selector block, and
specify the storage class on the output of the Signal Conversion block.

• In model reference Accelerator mode, Bus Selector output signal logging using the
ModelDataLogs format causes an error.

To work around this issue, change the signal logging format to Dataset or insert a
Signal Conversion block after the Bus Selector block and log the Signal Conversion
block output (instead of the Bus Selector block output).

• The priority specified on a Bus Selector block is ignored.

8-6

http://www.mathworks.com/help/releases/R2014a/simulink/ug/solving-embedded-performance-problems-using-multicore-processors-and-fpgas.html#bt8v_ei
http://www.mathworks.com/help/releases/R2014a/simulink/slref/matlabsystem.html

 Component-Based Modeling

• A Bus Selector block connected to root Outport block in referenced model honors the
Invalid root Inport/Outport block connection diagnostic. This is an issue only if
the diagnostic is set to Error or Warning. There is no impact on generated code.

Workaround: Insert a Signal Conversion block after the Bus Selector block.

Faster response time when opening bus routing block dialog boxes and
propagating signal labels

Opening the Bus Creator, Bus Selector, or Bus Assignment block dialog box is faster.
Propagation of signal labels is also faster.

Usability enhancements to configure a model for concurrent execution on
a target

Modeling for concurrent execution has the following enhancements:

• You can use MATLAB System blocks at the top level of a model to model parallel
computations. For more information, see Model Parallel Computations.

• You can clear the Solver > Allow tasks to execute concurrently on target check
box in the Configuration Parameters dialog for a referenced model. In this case,
Simulink will not report a parameter mismatch for the model hierarchy. When this
option is cleared, any Rate Transition blocks in the referenced model may have the
Ensure deterministic data transfer (maximum delay) option selected.

• Simulink now handles the data transfer for the rate transitions occurring at the top
level of a model. For more information, see Configure Your Model.

• There are new function to work with models for concurrent execution. Use these
functions instead of the command-line interface from previous releases. For more
information, see Command-Line Interface for Concurrent Execution.

Compatibility Considerations

Use the new functions instead of the following:

• Simulink.SoftwareTarget.concurrentExecution

• Simulink.SoftwareTarget.AperiodicTrigger

• Simulink.SoftwareTarget.PeriodicTrigger

8-7

http://www.mathworks.com/help/releases/R2014a/simulink/slref/matlabsystem.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/solving-embedded-performance-problems-using-multicore-processors-and-fpgas.html#buai1xr
http://www.mathworks.com/help/releases/R2014a/simulink/slref/ratetransition.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/configure-your-model.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/command-line-interface.html

R2014a

• Simulink.SoftwareTarget.PosixSignalHandler

• Simulink.SoftwareTarget.Task

• Simulink.SoftwareTarget.TaskConfiguration

• Simulink.SoftwareTarget.WindowsEventHandler

• Simulink.SoftwareTarget.Trigger

Default setting of Underspecified initialization detection diagnostic is
Simplified

Simplified initialization mode is the new default mode of initialization for all models
created in R2014a. Simplified initialization mode has improved output consistency over
classic initialization mode. For more information, see Conditional Subsystem Output
Initialization.

However, any new configuration sets created using Simulink.ConfigSet still use classic
initialization mode.

Discrete-Time Integrator block has dialog box changes for initialization

The Use Initial value as initial and reset value for parameter of the Discrete-Time
Integrator block has been replaced by the Initial Condition Setting parameter. The
new parameter provides options to carry out either output or state initialization. An
additional option of Compatibility does exist for this parameter, but use it only for
compatibility purposes.

System objects Propagates mixin methods

Four new methods have been added to the Propagates mixin class. You use this mixin
when creating a new kind of System object for use in the MATLAB System block in
Simulink. You use these methods to query the input and specify the output of a System
object.

• propagatedInputComplexity
• propagatedInputDataType
• propagatedInputFixedSize
• propagatedInputSize

8-8

http://www.mathworks.com/help/releases/R2014a/simulink/ug/conditional-subsystem-initialization.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/conditional-subsystem-initialization.html
http://www.mathworks.com/help/releases/R2014a/simulink/slref/simulink.configset.html
http://www.mathworks.com/help/releases/R2014a/simulink/slref/matlabsystem.html
http://www.mathworks.com/help/releases/R2014a/simulink/slref/matlab.system.mixin.propagates.propagatedinputcomplexity.html
http://www.mathworks.com/help/releases/R2014a/simulink/slref/matlab.system.mixin.propagates.propagatedinputdatatype.html
http://www.mathworks.com/help/releases/R2014a/simulink/slref/matlab.system.mixin.propagates.propagatedinputfixedsize.html
http://www.mathworks.com/help/releases/R2014a/simulink/slref/matlab.system.mixin.propagates.propagatedinputsize.html

 Simulation Analysis and Performance

Simulation Analysis and Performance

Reduced setup and build time for Model blocks when using Rapid
Accelerator mode

Building a model that uses model referencing in Rapid Accelerator mode is faster than in
previous releases, because Simulink reuses the simulation target.

If you have Parallel Computing Toolbox, you can enhance Rapid Accelerator build speed
further by using parallel builds.

In R2014a, Simulink stores Rapid Accelerator build artifacts in the simulation cache
folder instead of the code generation folder. This change avoids cluttering the code
generation folder with simulation artifacts.

Compatibility Considerations

• If you have a script that relies on Rapid Accelerator build artifacts being stored in the
code generation folder, the R2014a change to the artifact storage location requires
you to update that script only if you specify two different folders for the Simulink
preferences Simulation cache folder and Code generation folder.

• In R2014a, the Upgrade Advisor checks that S-functions work properly in top model
Rapid Accelerator simulation. The advisor identifies and assists you with updating S-
functions that meet all of the following conditions:

• The S-function was created in R2013b or earlier, using either the S-Function
Builder block or the Legacy Code Tool.

• The S-function uses a bus signal as an input or output.
• Simulink has added padding to that bus signal.

Before you simulate such S-functions in a top model in Rapid Accelerator mode,
regenerate the S-functions with the tool used for creating them. The Model Advisor
automatically regenerates as many of these S-functions as it can and identifies any
other S-functions that you must regenerate.

8-9

http://www.mathworks.com/help/releases/R2014a/simulink/gui/simulink-preferences-window-main-pane.html#bslolo1-1
http://www.mathworks.com/help/releases/R2014a/simulink/gui/simulink-preferences-window-main-pane.html#bslol74-1

R2014a

Performance Advisor checks that validate overall performance
improvement for all suggested changes and set code generation option
for MATLAB System block

• Performance Advisor validates the overall performance improvement to your model
using a final validation check. If performance is worse than baseline, Performance
Advisor discards all changes and loads the original model. For more information, see
Final Validation.

• Performance Advisor uses the Check MATLAB System block simulation mode
check to identify which MATLAB System blocks can generate code and changes the
Simulate using parameter value to Code generation where possible. For more
information, see Check MATLAB System block simulation mode.

Improved navigation of the Performance Advisor report

For improved navigation and readability, in the Performance Advisor HTML report, you
can:

• Filter the report to display results for checks that pass, warn, or fail.
• Display check results based on a keyword search.
• Quickly navigate to sections of the report using a navigation pane of the contents.
• Expand and collapse content in the check results.

For more information, see Use Performance Advisor Reports.

Block behavior for asynchronous initiator with constant sample time

In the simulation target workflow, Simulink displays a warning for an asynchronous
initiator with constant sample time. To avoid the warning, set the sample time
parameter of the asynchronous initiator to inherited. This change in sample time
parameter does not affect the code generation workflow.

Global setting for validation of checks in Performance Advisor

You can enable validation for all selected checks in Performance Advisor using a global
setting. Previously, you could only enable validation for checks in Performance Advisor
individually. For more information, see Select Validation Actions for the Advice.

8-10

http://www.mathworks.com/help/releases/R2014a/simulink/slref/simulink-checks_bth9tg2-2.html#bt89hf8
http://www.mathworks.com/help/releases/R2014a/simulink/slref/matlabsystem.html
http://www.mathworks.com/help/releases/R2014a/simulink/slref/simulink-checks_bth9tg2-2.html#bt44s63-1
http://www.mathworks.com/help/releases/R2014a/simulink/ug/view-and-save-performance-advisor-reports.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/preliminary-setup.html#bt8zm2o

 Simulation Analysis and Performance

Guided setup in Performance Advisor

The user interface in Performance Advisor has been enhanced with a guided setup and
workflow. The interface helps you to follow the workflow in Performance Advisor and also
select settings required for performance optimization runs. For more information, see
Prepare a Model for Performance Advisor.

8-11

http://www.mathworks.com/help/releases/R2014a/simulink/ug/preliminary-setup.html

R2014a

Project and File Management

Branching support through Git source control

Git integration with Simulink Project provides distributed source control with support
for creating and merging branches and working offline. You can manage your models and
source code using Git within Simulink Project.

For details, see Set Up Git Source Control.

Tip: If you want to add version control to your project files without sharing with another
user, you can create a local Git repository in your sandbox with four clicks. For details,
see Add a Project to Git Source Control.

Comparison of project dependency analysis results

You can compare a Simulink Project impact analysis graph with a previously saved
result of dependency analysis. This creates an interactive report you can use to
investigate how the structure of project dependencies has changed.

For details, see Save, Reload, and Compare Dependency Analysis Results.

Impact graph layout algorithm improved for easier identification of top
models and their dependencies

Improved hierarchical layout algorithm for the Simulink Project Impact graph makes
it easier to identify top models, now always on the left, and their dependencies, on the
right. Graph layout is repeatable so the top model is always in the same place if you run
dependency analysis multiple times. Graph performance is also faster. Dependencies
are layered to vertically line up all files referenced by the same file and minimize layer
crossings. These layers make it easier to identify dependencies at the same level. This
makes it easier to see connections between a top model and its dependencies.

For details, see Perform Impact Analysis.

8-12

http://www.mathworks.com/help/releases/R2014a/simulink/ug/set-up-git-source-control.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/add-a-project-to-source-control.html#bt7gg11-1
http://www.mathworks.com/help/releases/R2014a/simulink/ug/save-and-reload-dependency-analysis-results.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/perform-impact-analysis.html

 Project and File Management

Impact analysis example for finding and running impacted tests

The sldemo_slproject_impact example shows how to perform impact analysis in
Simulink Project to find and run impacted tests to validate a change. You can search
for dependencies of modified files to identify the tests you need to run. You can run a
batch processing function on the files found by impact analysis and examine the results
in Simulink Project.

For details, see Perform Impact Analysis with a Simulink® Project.

Performance improvements for common scripting operations such as
adding and removing files and labels

Common scripting operations for programmatically adding and removing files and file
labels in a Simulink Project are now faster. For example, adding a label to 100 files is up
to 40 times faster. Performance improvement depends on the project size.

For details, see Automate Project Management Tasks.

Conflict resolution tools to extract conflict markers

Source control tools can insert conflict markers in files. Simulink Project can identify
conflict markers and offer to extract them and compare the files causing the conflict. You
can then decide how to resolve the conflict.

For details, see Resolve Conflicts.

Updated Power Window Example

The Power Window Control Project example has been updated to take advantage of
design concepts such as:

• Simulink Projects
• Referenced models
• Variant subsystems

For more information, see Power Window Case Study.

8-13

http://www.mathworks.com/help/releases/R2014a/simulink/examples/perform-impact-analysis-with-a-simulink-project.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/automate-project-management-tasks.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/resolve-conflicts.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/power-window-example-case-study.html

R2014a

Data Management

Data dictionary for defining and managing design data associated with
models

In R2014a, Simulink provides the ability to store, edit, and access design data using a
data dictionary, which functions as a persistent repository of design data that your model
uses.

For more information, see the following.

• What Is a Data Dictionary?
• Considerations before Migrating to Data Dictionary
• Migrate Single Model to Use Dictionary
• View and Revert Changes to Dictionary Entries

Rapid Accelerator mode signal logging enhanced to avoid rebuilds and
to support buses and referenced models

In Rapid Accelerator mode, you can now log:

• Bus signals (including virtual, nonvirtual, and array of buses signals)
• Signals in referenced models

Also, in Rapid Accelerator mode, no rebuild occurs when you change:

• The Configuration Parameters > Data Import/Export > Signal logging
parameter

• Any settings using the Signal Logging Selector

Simplified tuning of all parameters in referenced models

This release simplifies the way Simulink considers the InlineParameters option when
it is set to Off. You can perform the following operations:

• Tune all block parameters in your model during simulation, either through the
parameters themselves or through the tunable variables that they reference.

8-14

http://www.mathworks.com/help/releases/R2014a/simulink/ug/what-is-a-data-dictionary.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/considerations-before-migrating-to-data-dictionary.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/migrate-single-model-to-use-dictionary.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/view-and-revert-changes-to-dictionary-entries.html

 Data Management

• Preserve the mapping between a block parameter and a variable in generated code
even when the block parameter does not reference any tunable variables.

• Retain the mapping between tunable workspace variables and variables in generated
code, irrespective of the InlineParameters setting.

• Set the value of InlineParameters to Off for model references.

These behaviors are consistent across models containing reusable subsystems and
reference models.

The simplified behavior enhances the generated code and provides improved mapping
between a block parameter and a variable in generated code.

Block parameter expression Code generated previously Code generated in R2014a

Expressions referencing global
variables (e.g., K+1)

Variable name is not preserved.
Block parameter name is
preserved.
struct Parameters_model_ {

 real_T Gain_Gain; // Expression: K+1

}

y = model_P.Gain_Gain*u;

Expression is considered
tunable. Variable name is
preserved in code and is tunable.
real_T K = 2.0;

y = (K+1)*u;

Expressions referencing mask
parameters for nonreusable
subsystems (e.g., MP*3), the
value of MP being a nontunable
expression.

Variable name is not preserved.
Block parameter name is
preserved.
struct Parameters_model_ {

 real_T Gain_Gain; // Expression: MP*3

}

y = model_P.Gain_Gain*u;

Expression is considered
tunable. Variable name is
substituted by parameter value.
struct Parameters_model_ {

 real_T Subsystem_MP;

}

y = (model_P.Subsystem_MP * 3) * u;

Expressions referencing
model arguments (resp. mask
parameters) for referenced
models (resp. reusable
subsystems) (e.g., Arg+1)

Variable name is not preserved.
Block parameter name is
preserved.
struct Subsystem {

 Gain_Gain; // Expression: Arg+1

}

y = model_P.Subsystem1.Gain_Gain*u;

Variable name is preserved as
an argument name.
subsystem(y, u, rtp_Arg) {

 y = (rtp_Arg+1)*u;

}

Simulink.findVars supported in referenced models

In this release, Simulink provides the ability to search model reference hierarchies for
variables that are used or not used.

8-15

R2014a

See Simulink.findVars for information on how to run these searches from the command-
line.

Saving workspace variables and their values to a MATLAB script

In a future release, Simulink will not support Simulink.saveVars, which provides the
ability to save workspace variables to a MATLAB script.

Instead, you can use the MATLAB function matlab.io.saveVariablesToScript to perform
this operation from the command line.

Compatibility Considerations

If your scripts contain references to the function Simulink.saveVars, replace these
references with matlab.io.saveVariablesToScript.

Frame-based signals in the To Workspace block

In the To Workspace block parameters dialog box, if you set Save format to either
Array or Structure, you can set the new Save 2-D signals as parameter. By default,
this new parameter is set for sample-based signals. To have the To Workspace block
treat the input signal as a frame-based signal, change the setting to 2-D array
(concatenate along first dimension).

Use this new To Workspace block parameter to treat an input signal to the block as a
frame-based signal. This method of having Simulink treat an input signal as frame-based
configures the model to work in future releases, when Simulink will no longer support
using a signal property to specify that a signal is frame-based.

For information about frame-based signals, in the DSP System Toolbox documentation,
see Frame-Based Processing.

Compatibility Considerations

Before R2014a, if you added a To Workspace block to a model, and you set Save format
to either Array or Structure, you did not need to change any block parameter settings
to handle frame-based signals.

8-16

http://www.mathworks.com/help/releases/R2014a/simulink/slref/simulink.findvars.html
http://www.mathworks.com/help/releases/R2014a/simulink/slref/simulink.savevars.html
http://www.mathworks.com/help/releases/R2014a/matlab/ref/matlab.io.savevariablestoscript.html
http://www.mathworks.com/help/releases/R2014a/simulink/slref/simulink.savevars.html
http://www.mathworks.com/help/releases/R2014a/matlab/ref/matlab.io.savevariablestoscript.html
http://www.mathworks.com/help/releases/R2014a/dsp/release-notes.html#bs8sj6r-1

 Data Management

In R2014a, in addition to setting Save format to either Array or Structure, you need
to set the new Save 2-D signals as parameter to 2-D array (concatenate along
first dimension).

If you open a model created before R2014a that inputs a frame-based signal to a To
Workspace block, Simulink sets the Save 2-D signals as parameter to Inherit from
input (this choice will be removed - see release notes). When you
simulate the model, Simulink displays a warning, with a link to the Upgrade Advisor,
which you can use to update your model to use the new frame-based signal handling
approach (automatically setting Save 2-D signals as to 2-D array (concatenate
along first dimension).

Simulation mode consistency for Data Import/Export pane output options
parameter

The behavior for the Configuration Parameters > Data Import/Export > Output
options parameter value of Produce specified output only is now consistent for
Rapid Accelerator, Accelerator, and Normal mode. In all three simulation modes, this
setting results in automatically generating output signal data for variable-step solvers
for the start and stop times, as well as for the times that the user specifies.

Compatibility Considerations

Prior to R2014a, in Rapid Accelerator mode the Produce specified output only
setting only generated data for the specified times, and did not automatically generate
data for the start and stop times.

You need to update scripts that rely on:

• Indexing that assumes that the first generated value is the first data value that you
specify using the Produce specified output only setting

• The number of the data points

Dimension mismatch handling for root Inport blocks improved

For the input and output of a root Inport block, Simulink no longer distinguishes between
a dimension of 1 and a dimension that is a vector of ones.

For example, Simulink no longer reports an error when both of these conditions apply:

8-17

R2014a

• Input data for a root Inport block includes an element whose dimension is [1x1].
• The root Inport block has as its data type for output a bus object whose corresponding

element has a dimension of [1].

Compatibility Considerations

Before R2014a, Simulink reported an error for this kind of dimension mismatches. If
you have tests that rely on Simulink reporting an error, you need to modify the tests to
identify such mismatches explicitly.

Simulink.Bus.createObject support for structures of timeseries
objects

You can use the Simulink.Bus.createObject function to create bus objects from a
structure of MATLAB timeseries objects. This facilitates importing logged signal data.

Signal logging override for model reference variants

You can override programmatically a subset of signals for model reference variant
systems, including:

• Model reference variants
• Model blocks that contain a Subsystem Variant block or model reference variant

To log a subset of signals for these model reference variant systems, set the
SignalLoggingSaveFormat parameter to Dataset. For details, see Override Signal
Logging Settings from MATLAB.

Improved To Workspace block default for fixed-point data

The block parameter Log fixed-point data as fi object is now enabled by default for
the To Workspace block in the Simulink library. This causes Simulink to log data to the
To Workspace block in a data format designed for fixed-point data.

Compatibility Considerations

You need to update any scripts that:

8-18

http://www.mathworks.com/help/releases/R2014a/simulink/slref/simulink.bus.createobject.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/overriding-signal-logging-settings.html#bs40nea
http://www.mathworks.com/help/releases/R2014a/simulink/ug/overriding-signal-logging-settings.html#bs40nea

 Data Management

• Insert from the Simulink library a To Workspace block that logs fixed-point data
• Rely on the Log fixed-point data as fi object parameter not being enabled (which

results in logging fixed-point data as doubles)

Legacy Code Tool support for 2–D row-major matrix

When you use the legacy_code function, you can now specify the automatic conversion
of a matrix between a 2-D column-major format and a row-major format. Use the
convert2DMatrixToRowMajor S-function option. The 2-D column-major format is used
by MATLAB, Simulink, and the generated code. The row-major format is used by C. By
default, the value is false (0).

Model Explorer property name filtering refined

In the Model Explorer Filter Contents edit box, when you enter a property name
without specifying a value (for example, BlockType:), the Contents pane displays only
those objects that have that property.

For details, see Filter Objects in the Model Explorer.

8-19

http://www.mathworks.com/help/releases/R2014a/simulink/slref/legacy_code.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/the-model-explorer-using-the-row-filter-option-and-filtering-contents.html

R2014a

Connection to Educational Hardware

Support for Arduino Due hardware

You can use the Arduino Due support package independently of the Arduino support
package for Arduino Uno, Arduino Mega 2560, and Arduino Nano hardware. The
Arduino Due support package shares the common block library with the Arduino Support
package including the Ethernet and the WiFi blocks. The target hardware for this
support package is a 32–bit ARM architecture-based microcontroller.

To use this support package, install Arduino Due support package as follows:

1 In the Command Window, enter supportPackageInstaller.
2 Using supportPackageInstaller, install the Arduino Due support package.

Support for Arduino WiFi Shield hardware

You can use the Arduino WiFi Shield with the Simulink Support Package for Arduino
Hardware to connect to wireless networks. The block library for the Arduino WiFi shield
hardware includes WiFi TCP/IP and WiFi UDP blocks that enable you to design wireless
communication in embedded systems. The WiFi shield supports wireless external mode
simulation via TCP/IP.

The block library for the Arduino WiFi Shield hardware includes:

• Arduino WiFi TCP/IP Send and Arduino WiFi TCP/IP Receive blocks that enable
TCP/IP based wireless communication.

• Arduino WiFi UDP Send and Arduino WiFi UDP Receive blocks that enable UDP
based wireless communication.

To install or update this support package, perform the steps described in Install Support
for Arduino Hardware.

For more information, see Arduino Hardware

Support for LEGO MINDSTORMS EV3 hardware

You can run Simulink models on LEGO MINDSTORMS EV3 hardware. You can also
tune parameter values in the model, and receive data from the model, while it is running
on LEGO MINDSTORMS EV3 hardware.

8-20

http://www.mathworks.com/help/releases/R2014a/simulink/ug/install-target-for-arduino-hardware.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/install-target-for-arduino-hardware.html
http://www.mathworks.com/help/releases/R2014a/simulink/arduino.html

 Connection to Educational Hardware

Use the Simulink Support Package for LEGO MINDSTORMS EV3 Hardware
block library to access LEGO MINDSTORMS EV3 peripherals:

• Button
• Color Sensor
• Encoder
• Gyro Sensor
• Infrared Sensor
• Display
• Motor
• Speaker
• Touch Sensor
• Ultrasonic Sensor

To install or update this support package, perform the steps described in Install Support
for LEGO MINDSTORMS EV3 Hardware.

For more information, see LEGO MINDSTORMS EV3 Hardware.

Updates to support for LEGO MINDSTORMS NXT hardware

You can use the dGPS Sensor from Dexter Industries with the Simulink Support Package
for LEGO MINDSTORMS NXT Hardware. Use the GPS Sensor block to measure the
latitude and longitude of your current position, or get the distance and angle from your
current position to a destination latitude and longitude.

To install or update this support package, perform the steps described in Install Support
for LEGO MINDSTORMS NXT Hardware.

For more information, see LEGO MINDSTORMS NXT Hardware.

Support for Samsung GALAXY Android devices

You can run Simulink models on the Samsung GALAXY S4 and Tab 2 10.1 devices. You
can also tune parameter values in the model, and receive data from the model, while it is
running on Samsung GALAXY S4 and Tab 2 10.1 devices.

8-21

http://www.mathworks.com/help/releases/R2014a/button.html
http://www.mathworks.com/help/releases/R2014a/colorsensor.html
http://www.mathworks.com/help/releases/R2014a/encoder.html
http://www.mathworks.com/help/releases/R2014a/gyrosensor.html
http://www.mathworks.com/help/releases/R2014a/infraredsensor.html
http://www.mathworks.com/help/releases/R2014a/display.html
http://www.mathworks.com/help/releases/R2014a/motor.html
http://www.mathworks.com/help/releases/R2014a/speaker.html
http://www.mathworks.com/help/releases/R2014a/touchsensor.html
http://www.mathworks.com/help/releases/R2014a/ultrasonicsensor.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/install-target-for-lego-mindstorms-ev3-hardware.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/install-target-for-lego-mindstorms-ev3-hardware.html
http://www.mathworks.com/help/releases/R2014a/simulink/lego-mindstorms-ev3-hardware.html
http://www.dexterindustries.com/dGPS.html
http://www.mathworks.com/help/releases/R2014a/gpssensor.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/install-target-for-lego-mindstorms-nxt-hardware.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/install-target-for-lego-mindstorms-nxt-hardware.html
http://www.mathworks.com/help/releases/R2014a/simulink/lego-mindstorms-nxt.html

R2014a

Use the Simulink Support Package for Samsung GALAXY Android Devices block
library to access the Samsung GALAXY Android hardware:

• Accelerometer
• Ambient Temperature Sensor
• Audio Capture
• Audio Playback
• Camera
• Display
• FromApp
• Gyroscope
• Humidity Sensor
• Light Sensor
• Location Sensor
• Pressure Sensor
• ToApp
• UDP Receive
• UDP Send

To install or update this support package, perform the steps described in Install Support
for Samsung GALAXY Android Devices.

8-22

http://www.mathworks.com/help/releases/R2014a/accelerometer.html
http://www.mathworks.com/help/releases/R2014a/ambienttemperaturesensor.html
http://www.mathworks.com/help/releases/R2014a/audiocapture.html
http://www.mathworks.com/help/releases/R2014a/audioplayback.html
http://www.mathworks.com/help/releases/R2014a/camera.html
http://www.mathworks.com/help/releases/R2014a/display.html
http://www.mathworks.com/help/releases/R2014a/fromapp.html
http://www.mathworks.com/help/releases/R2014a/gyroscope.html
http://www.mathworks.com/help/releases/R2014a/humiditysensor.html
http://www.mathworks.com/help/releases/R2014a/lightsensor.html
http://www.mathworks.com/help/releases/R2014a/locationsensor.html
http://www.mathworks.com/help/releases/R2014a/pressuresensor.html
http://www.mathworks.com/help/releases/R2014a/toapp.html
http://www.mathworks.com/help/releases/R2014a/udpreceive.html
http://www.mathworks.com/help/releases/R2014a/udpsend.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/install-support-for-samsung-galaxy-android-devices.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/install-support-for-samsung-galaxy-android-devices.html

 Block Enhancements

Block Enhancements

Enumerated data types in the Direct Lookup Table (n-D) block

The Direct Lookup Table (n-D) block now supports enumerated data types for its index
and table data values.

Improved performance and code readability in linear search algorithm
for Prelookup and n-D Lookup Table blocks

The Prelookup and n-D Lookup Table blocks have an improved linear search algorithm
which improves performance and code readability.

System object file templates

The MATLAB System block has new templates to help create System objects.

Relay block output of fixed-in-minor-step continuous signal for continuous
input

The Relay block now delivers fixed-in-minor-step continuous signals for continuous input.
Previously, the Relay block output signal was a continuous output for a continuous input.
The new sample time represents the behavior of the block more accurately.

8-23

http://www.mathworks.com/help/releases/R2014a/simulink/slref/matlabsystem.html

R2014a

MATLAB Function Blocks

Generating Simulation Target typedefs for imported bus and enumerated
data types

You can configure Simulink to generate typedefs for imported bus and enumerated data
types or to use typedefs you provide in a header file. In the Simulation Target pane of
the Configuration Parameters dialog box, use the Generate typedefs for imported
bus and enumeration types check box. This setting applies to model simulation for
MATLAB Function blocks. For more information see Simulation Target Pane: General.

Complex data types in data stores

You can now access complex data types in Data Store Memory blocks and
Simulink.Signal objects using MATLAB Function blocks.

Unicode character support for MATLAB Function block names

You can use international characters for MATLAB Function block names in the Simulink
Editor.

Support for int64 and uint64 data types in MATLAB Function blocks

You can now use int64 and uint64 data types in MATLAB code inside MATLAB Function
blocks. You cannot use int64 or uint64 types for input or output signals to MATLAB
Function blocks.

Streamlined MEX compiler setup and improved troubleshooting

You no longer have to choose a compiler using mex -setup. mex automatically locates
and uses a supported installed compiler. You can use mex -setup to change the default
compiler. See Changing Default Compiler.

Code generation for additional Image Processing Toolbox functions

Image Processing Toolbox

affine2d im2uint16 imhist

8-24

http://www.mathworks.com/help/releases/R2014a/simulink/gui/simulation-target-pane-general.html
http://www.mathworks.com/help/releases/R2014a/matlab/matlab_external/changing-default-compiler.html
http://www.mathworks.com/help/releases/R2014a/images/ref/affine2d-class.html
http://www.mathworks.com/help/releases/R2014a/images/ref/im2uint16.html
http://www.mathworks.com/help/releases/R2014a/images/ref/imhist.html

 MATLAB Function Blocks

bwpack im2uint8 imopen
bwselect imbothat imref2d
bwunpack imclose imref3d
edge imdilate imtophat
getrangefromclass imerode imwarp
im2double imextendedmax mean2
im2int16 imextendedmin projective2d
im2single imfilter strel

See Image Processing Toolbox.

Code generation for additional Signal Processing Toolbox,
Communications System Toolbox, and DSP System Toolbox functions and
System objects

Signal Processing Toolbox

• findpeaks
• db2pow
• pow2db

See Signal Processing Toolbox.

Communications System Toolbox

• comm.OFDMModulator
• comm.OFDMDemodulator

See Communications System Toolbox.

DSP System Toolbox

ca2tf firhalfband ifir iirnotch
cl2tf firlpnorm iircomb iirpeak
firceqrip firminphase iirgrpdelay tf2ca

8-25

http://www.mathworks.com/help/releases/R2014a/images/ref/bwpack.html
http://www.mathworks.com/help/releases/R2014a/images/ref/im2uint8.html
http://www.mathworks.com/help/releases/R2014a/images/ref/imopen.html
http://www.mathworks.com/help/releases/R2014a/images/ref/bwselect.html
http://www.mathworks.com/help/releases/R2014a/images/ref/imbothat.html
http://www.mathworks.com/help/releases/R2014a/images/ref/imref2d-class.html
http://www.mathworks.com/help/releases/R2014a/images/ref/bwunpack.html
http://www.mathworks.com/help/releases/R2014a/images/ref/imclose.html
http://www.mathworks.com/help/releases/R2014a/images/ref/imref3d-class.html
http://www.mathworks.com/help/releases/R2014a/images/ref/edge.html
http://www.mathworks.com/help/releases/R2014a/images/ref/imdilate.html
http://www.mathworks.com/help/releases/R2014a/images/ref/imtophat.html
http://www.mathworks.com/help/releases/R2014a/images/ref/getrangefromclass.html
http://www.mathworks.com/help/releases/R2014a/images/ref/imerode.html
http://www.mathworks.com/help/releases/R2014a/images/ref/imwarp.html
http://www.mathworks.com/help/releases/R2014a/images/ref/im2double.html
http://www.mathworks.com/help/releases/R2014a/images/ref/imextendedmax.html
http://www.mathworks.com/help/releases/R2014a/images/ref/mean2.html
http://www.mathworks.com/help/releases/R2014a/images/ref/im2int16.html
http://www.mathworks.com/help/releases/R2014a/images/ref/imextendedmin.html
http://www.mathworks.com/help/releases/R2014a/images/ref/projective2d-class.html
http://www.mathworks.com/help/releases/R2014a/images/ref/im2single.html
http://www.mathworks.com/help/releases/R2014a/images/ref/imfilter.html
http://www.mathworks.com/help/releases/R2014a/images/ref/strel.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bsl0arh-1
http://www.mathworks.com/help/releases/R2014a/signal/ref/findpeaks.html
http://www.mathworks.com/help/releases/R2014a/signal/ref/db2pow.html
http://www.mathworks.com/help/releases/R2014a/signal/ref/pow2db.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bq1h2z8-28
http://www.mathworks.com/help/releases/R2014a/comm/ref/comm.ofdmmodulator-class.html
http://www.mathworks.com/help/releases/R2014a/comm/ref/comm.ofdmdemodulator-class.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bsl_qz1-1
http://www.mathworks.com/help/releases/R2014a/dsp/ref/ca2tf.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/firhalfband.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/ifir.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/iirnotch.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/cl2tf.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/firlpnorm.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/iircomb.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/iirpeak.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/firceqrip.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/firminphase.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/iirgrpdelay.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/tf2ca.html

R2014a

fireqint firnyquist iirlpnorm tf2cl
firgr firpr2chfb iirlpnormc dsp.DCBlocker

See DSP System Toolbox.

Code generation for MATLAB fminsearch optimization function,
additional interpolation functions, and additional interp1 and
interp2 interpolation methods

You can generate code for the interp1 function 'spline’ and 'v5cubic’ interpolation
methods.

You can generate code for the interp2 function 'spline’ and 'cubic’ methods.

You can generate code for these interpolation functions:

• interp3
• mkpp
• pchip
• ppval
• spline
• unmkpp

See Interpolation and Computational Geometry in MATLAB.

You can generate code for these optimization functions:

• fminsearch
• optimget
• optimset

See Optimization Functions in MATLAB.

Code generation for fread function

You can now generate code for the fread function.

8-26

http://www.mathworks.com/help/releases/R2014a/dsp/ref/fireqint.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/firnyquist.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/iirlpnorm.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/tf2cl.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/firgr.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/firpr2chfb.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/iirlpnormc.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.dcblocker-class.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bt7ln6w
http://www.mathworks.com/help/releases/R2014a/matlab/ref/interp1.html
http://www.mathworks.com/help/releases/R2014a/matlab/ref/interp2.html
http://www.mathworks.com/help/releases/R2014a/matlab/ref/interp3.html
http://www.mathworks.com/help/releases/R2014a/matlab/ref/mkpp.html
http://www.mathworks.com/help/releases/R2014a/matlab/ref/pchip.html
http://www.mathworks.com/help/releases/R2014a/matlab/ref/ppval.html
http://www.mathworks.com/help/releases/R2014a/matlab/ref/spline.html
http://www.mathworks.com/help/releases/R2014a/matlab/ref/unmkpp.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bq1h2z8-22
http://www.mathworks.com/help/releases/R2014a/matlab/ref/fminsearch.html
http://www.mathworks.com/help/releases/R2014a/matlab/ref/optimget.html
http://www.mathworks.com/help/releases/R2014a/matlab/ref/optimset.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bt891f3

 MATLAB Function Blocks

Enhanced code generation for switch statements

Code generation now supports:

• Switch expressions and case expressions that are noninteger numbers, nonconstant
strings, variable-size strings, or empty matrices

• Case expressions with mixed types and sizes

If all case expressions are scalar integer values, the code generation software generates
a C switch statement. At run time, if the switch value is not an integer, the code
generation software generates an error.

When the case expressions contain noninteger or nonscalar values, the code generation
software generates C if statements in place of a C switch statement.

Code generation for value classes with set.prop methods

You can now generate code for value classes that have set.prop methods.

Code generation error for properties that use AbortSet attribute

Previously, when the current and new property values were equal, the generated code
set the property value and called the set property method regardless of the value of
the AbortSet attribute. When the AbortSet attribute was true, the generated-code
behavior differed from the MATLAB behavior.

In R2014a, the code generation software generates an error if your code has properties
that use the AbortSet attribute.

Toolbox functions for code generation

See Functions and Objects Supported for C and C++ Code Generation — Alphabetical
List and Functions and Objects Supported for C and C++ Code Generation — Categorical
List.

Communications System Toolbox

• comm.OFDMModulator
• comm.OFDMDemodulator

8-27

http://www.mathworks.com/help/releases/R2014a/simulink/ug/functions-supported-for-code-generation--alphabetical-list.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/functions-supported-for-code-generation--alphabetical-list.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2014a/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/releases/R2014a/comm/ref/comm.ofdmmodulator-class.html
http://www.mathworks.com/help/releases/R2014a/comm/ref/comm.ofdmdemodulator-class.html

R2014a

Data and File Management Functions

fread

DSP System Toolbox Classes and Functions

ca2tf firhalfband ifir iirnotch
cl2tf firlpnorm iircomb iirpeak
firceqrip firminphase iirgrpdelay tf2ca
fireqint firnyquist iirlpnorm tf2cl
firgr firpr2chfb iirlpnormc dsp.DCBlocker

Image Processing Toolbox

affine2d im2uint16 imhist
bwpack im2uint8 imopen
bwselect imbothat imref2d
bwunpack imclose imref3d
edge imdilate imtophat
getrangefromclass imerode imwarp
im2double imextendedmax mean2
im2int16 imextendedmin projective2d
im2single imfilter strel

Interpolation and Computational Geometry Functions

• interp2
• interp3
• mkpp
• pchip
• ppval
• polyarea
• rectint
• spline

8-28

http://www.mathworks.com/help/releases/R2014a/matlab/ref/fread.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/ca2tf.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/firhalfband.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/ifir.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/iirnotch.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/cl2tf.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/firlpnorm.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/iircomb.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/iirpeak.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/firceqrip.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/firminphase.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/iirgrpdelay.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/tf2ca.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/fireqint.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/firnyquist.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/iirlpnorm.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/tf2cl.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/firgr.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/firpr2chfb.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/iirlpnormc.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.dcblocker-class.html
http://www.mathworks.com/help/releases/R2014a/images/ref/affine2d-class.html
http://www.mathworks.com/help/releases/R2014a/images/ref/im2uint16.html
http://www.mathworks.com/help/releases/R2014a/images/ref/imhist.html
http://www.mathworks.com/help/releases/R2014a/images/ref/bwpack.html
http://www.mathworks.com/help/releases/R2014a/images/ref/im2uint8.html
http://www.mathworks.com/help/releases/R2014a/images/ref/imopen.html
http://www.mathworks.com/help/releases/R2014a/images/ref/bwselect.html
http://www.mathworks.com/help/releases/R2014a/images/ref/imbothat.html
http://www.mathworks.com/help/releases/R2014a/images/ref/imref2d-class.html
http://www.mathworks.com/help/releases/R2014a/images/ref/bwunpack.html
http://www.mathworks.com/help/releases/R2014a/images/ref/imclose.html
http://www.mathworks.com/help/releases/R2014a/images/ref/imref3d-class.html
http://www.mathworks.com/help/releases/R2014a/images/ref/edge.html
http://www.mathworks.com/help/releases/R2014a/images/ref/imdilate.html
http://www.mathworks.com/help/releases/R2014a/images/ref/imtophat.html
http://www.mathworks.com/help/releases/R2014a/images/ref/getrangefromclass.html
http://www.mathworks.com/help/releases/R2014a/images/ref/imerode.html
http://www.mathworks.com/help/releases/R2014a/images/ref/imwarp.html
http://www.mathworks.com/help/releases/R2014a/images/ref/im2double.html
http://www.mathworks.com/help/releases/R2014a/images/ref/imextendedmax.html
http://www.mathworks.com/help/releases/R2014a/images/ref/mean2.html
http://www.mathworks.com/help/releases/R2014a/images/ref/im2int16.html
http://www.mathworks.com/help/releases/R2014a/images/ref/imextendedmin.html
http://www.mathworks.com/help/releases/R2014a/images/ref/projective2d-class.html
http://www.mathworks.com/help/releases/R2014a/images/ref/im2single.html
http://www.mathworks.com/help/releases/R2014a/images/ref/imfilter.html
http://www.mathworks.com/help/releases/R2014a/images/ref/strel.html
http://www.mathworks.com/help/releases/R2014a/matlab/ref/interp2.html
http://www.mathworks.com/help/releases/R2014a/matlab/ref/interp3.html
http://www.mathworks.com/help/releases/R2014a/matlab/ref/mkpp.html
http://www.mathworks.com/help/releases/R2014a/matlab/ref/pchip.html
http://www.mathworks.com/help/releases/R2014a/matlab/ref/ppval.html
http://www.mathworks.com/help/releases/R2014a/matlab/ref/polyarea.html
http://www.mathworks.com/help/releases/R2014a/matlab/ref/rectint.html
http://www.mathworks.com/help/releases/R2014a/matlab/ref/spline.html

 MATLAB Function Blocks

• unmkpp

Matrix and Array Functions

flip

Optimization Functions

• fminsearch
• optimget
• optimset

Polynomial Functions

• polyder
• polyint
• polyvalm

Signal Processing Toolbox

• findpeaks
• db2pow
• pow2db

8-29

http://www.mathworks.com/help/releases/R2014a/matlab/ref/unmkpp.html
http://www.mathworks.com/help/releases/R2014a/matlab/ref/flip.html
http://www.mathworks.com/help/releases/R2014a/matlab/ref/fminsearch.html
http://www.mathworks.com/help/releases/R2014a/matlab/ref/optimget.html
http://www.mathworks.com/help/releases/R2014a/matlab/ref/optimset.html
http://www.mathworks.com/help/releases/R2014a/matlab/ref/polyder.html
http://www.mathworks.com/help/releases/R2014a/matlab/ref/polyint.html
http://www.mathworks.com/help/releases/R2014a/matlab/ref/polyvalm.html
http://www.mathworks.com/help/releases/R2014a/signal/ref/findpeaks.html
http://www.mathworks.com/help/releases/R2014a/signal/ref/db2pow.html
http://www.mathworks.com/help/releases/R2014a/signal/ref/pow2db.html

R2014a

Modeling Guidelines

Modeling guidelines for high-integrity systems

The following are new modeling guidelines to develop models and generate code for high-
integrity systems:

• hisl_0029: Usage of Assignment blocks
• himl_0004: MATLAB Code Analyzer recommendations for code generation
• himl_0005: Usage of global variables in MATLAB functions
• himl_0006: MATLAB code if / elseif / else patterns
• himl_0007: MATLAB code switch / case / otherwise patterns
• himl_0008: MATLAB code relational operator data types
• himl_0009: MATLAB code with equal / not equal relational operators
• himl_0010: MATLAB code with logical operators and functions

8-30

http://www.mathworks.com/help/releases/R2014a/simulink/mdl_gd/math-operations.html#bt56saw-1
http://www.mathworks.com/help/releases/R2014a/simulink/mdl_gd/matlab-code-patterns.html#bt5s6py
http://www.mathworks.com/help/releases/R2014a/simulink/mdl_gd/modeling-style_btoluv4-2.html#bt5s494
http://www.mathworks.com/help/releases/R2014a/simulink/mdl_gd/matlab-code-patterns.html#bt5s5cf-1
http://www.mathworks.com/help/releases/R2014a/simulink/mdl_gd/matlab-code-patterns.html#bt5s5cm-1
http://www.mathworks.com/help/releases/R2014a/simulink/mdl_gd/matlab-code-patterns.html#bt5s5cp-1
http://www.mathworks.com/help/releases/R2014a/simulink/mdl_gd/matlab-code-patterns.html#bt5s5cw-1
http://www.mathworks.com/help/releases/R2014a/simulink/mdl_gd/matlab-code-patterns.html#bt5s5cx-1

 Model Advisor

Model Advisor

Improved navigation of the Model Advisor report, including a navigation
pane, collapsible content, and filters based on check status

For improved navigation and readability, the Model Advisor HTML report allows you to:

• Filter the report to display results for checks that pass, warn, or fail.
• Display check results based on a keyword search.
• Quickly navigate to sections of the report using a table-of-contents navigation pane.
• Expand and collapse content in the check results.

For more information, see View and Save Model Advisor Reports.

Option to run Model Advisor checks in the background

If you have a Parallel Computing Toolbox license, you can run the Model Advisor in
the background, allowing you to continue working on your model during Model Advisor
analysis. When you start a Model Advisor analysis run in the background, Model Advisor
takes a snapshot of your model. The Model Advisor analysis does not reflect changes that
you make to your model while Model Advisor is running. For more information, see Run
Checks in the Background.

Upgrade Advisor check for get_param calls for block
CompiledSampleTime

Upgrade Advisor has a new check to scan MATLAB files in your working environment
forget_param function calls that return the block CompiledSampleTime parameter.
For multirate blocks, Simulink returns this parameter as a cell array of pairs of doubles.
Run this check to identify MATLAB code that accepts the block CompiledSampleTime
parameter as a pair of doubles. You can edit these instances of code to accept a cell array
of pairs of doubles.

For more information, see Check get_param calls for block CompiledSampleTime.

8-31

http://www.mathworks.com/help/releases/R2014a/simulink/ug/consulting-the-model-advisor.html#brkj03y-1
http://www.mathworks.com/help/releases/R2014a/simulink/ug/consulting-the-model-advisor.html#bt826ku-1
http://www.mathworks.com/help/releases/R2014a/simulink/ug/consulting-the-model-advisor.html#bt826ku-1
http://www.mathworks.com/help/releases/R2014a/simulink/slref/simulink-checks_bq6d4aa-1.html#bt7a0r4-1

R2014a

Upgrade Advisor check for signal logging in Rapid Accelerator mode

When simulating your model in Rapid Accelerator mode, you can run a check in Upgrade
Advisor to see if signals logged in your model are globally disabled. Using this check, you
can enable signal logging globally.

For more information, see Check Rapid Accelerator signal logging.

8-32

http://www.mathworks.com/help/releases/R2014a/simulink/slref/simulink-checks_bq6d4aa-1.html#bt7a0wc-1

R2013b
Version: 8.2

New Features

Bug Fixes

Compatibility Considerations

R2013b

New Simulink Editor

Ability to add rich controls, links, and images to customized block
interfaces using the Mask Editor

The mask editor is enhanced to support designing mask dialogs using controls such as
images, links, and buttons. For details, see Masking.

Content preview for subsystems and Stateflow charts

Without opening the blocks, in the Simulink Editor you can preview the content of the
following hierarchical items:

• Subsystems
• Model blocks
• Stateflow charts and subcharts

For example, the Throttle & Manifold subsystem uses content preview, and the
Compression subsystem does not.

Content preview can help to make a model self-documenting.

For details, see Preview Content of Hierarchical Items.

Comment-through capability to temporarily delete blocks and connect
input signals to output signals

You can comment through blocks such that they appear transparent during simulation.
For more information, see Comment Blocks.

9-2

http://www.mathworks.com/help/releases/R2013b/simulink/masking.html
http://www.mathworks.com/help/releases/R2013b/simulink/ug/preview-content-of-hierarchical-items.html
http://www.mathworks.com/help/releases/R2013b/simulink/ug/editing-blocks.html#btms_1l

 New Simulink Editor

New options added to find_system command

You can exclude or include blocks from search using the IncludeCommented option of
the find_system command. For more information, see Modeling Basics.

Visual cues for signal lines that cross

Unconnected signal lines that cross have a small break on either side of the intersection,
to show that the signals are not connected. For example:

For details, see Signal Line Crossings.

9-3

http://www.mathworks.com/help/releases/R2013b/simulink/slref/find_system.html
http://www.mathworks.com/help/releases/R2013b/simulink/modeling-basics.html
http://www.mathworks.com/help/releases/R2013b/simulink/gs/create-a-simple-model.html#btxxr4c

R2013b

UTF-16 character support for block names, signal labels, and annotations
in local languages

You can use international characters when editing text in the Simulink Editor for the
following:

• Block names (the text below the block)
• Block annotations (text in the Block Properties dialog box Annotations tab, for block

property tokens such as %<BlockDescription>)
• Signal names (in the signal label text box below a signal)
• Model annotations

You can use international text for block names and signal names when using MATLAB
commands such as find_system.

Unified Print Model dialog box for printing

The reorganized Print Model dialog box provides the same printing interface on Microsoft
Windows, Macintosh, and Linux platforms.

To consolidate model printing options, the Print Model dialog now includes:

• Paper type
• Page orientation

For details, see Printing Options.

Compatibility Considerations

The reorganized Print Model dialog box no longer has these options:

• Selection for Print Range

You can use tiled printing and options such as Current system and below to specify
the part of a model to print.

• Properties

Instead, use the File > Print > Printer Setup > Properties dialog box.

9-4

http://www.mathworks.com/help/releases/R2013b/simulink/ug/printing-capabilities.html#btzmog9

 New Simulink Editor

Block Parameters dialog box access from Block Properties dialog box

In the Block Properties dialog box, you can open the Block Parameters dialog box by
using the Open Block link. For details, see Block Properties Dialog Box.

Notification bar icon indicator for multiple notifications

After you simulate a model, if there are multiple notifications, the Simulink Editor
notification bar icon becomes an arrow. For details, see Record Simulation Data.

9-5

http://www.mathworks.com/help/releases/R2013b/simulink/ug/block-properties-dialog-box.html#btix0b5
http://www.mathworks.com/help/releases/R2013b/simulink/ug/record-simulation-data.html

R2013b

Component-Based Modeling

MATLAB System block for including System objects in Simulink models

The MATLAB System block is a new block in the Simulink User-Defined Functions
library. Use this block to create a Simulink block that includes a System object in your
model. This capability is useful for including algorithms. For more information, see
System Object Integration.

Variant Manager that manages all the variants in a model in one place

Variant Manager is a graphical tool that allows you to define and manage multiple
variant configurations for Simulink models. For details, see Variant Management.

Improved componentization capabilities for modeling scheduling
diagrams with root-level function-call inports

Models can now export functions by using root-level function-call Inport blocks. Such
models can simulate in Normal, Accelerator, Rapid Accelerator, SIL, and PIL simulation
modes.

Array of buses signal logging in model reference accelerator mode

You can log an array of buses signal in models using model reference accelerator mode or
Normal mode. In R2013a, you could only log array of buses signals in Normal mode.

Ability to add, delete, and move input signals within Bus Creator block

The Bus Creator block includes Up, Down, Add, and Remove buttons to simplify
organizing the input signals. When you add or remove signals, Simulink automatically
updates the Number of inputs parameter of the Bus Creator block and maintains port
connectivity in the model.

For details, see Reorder, Add, or Remove Signals in the Bus Creator block reference page.

9-6

http://www.mathworks.com/help/releases/R2013b/simulink/slref/matlabsystem.html
http://www.mathworks.com/help/releases/R2013b/simulink/define-new-system-objects.html
http://www.mathworks.com/help/releases/R2013b/simulink/ug/variant-management.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/buscreator.html#btydp57

 Component-Based Modeling

Streamlined approach to migrating from Classic to Simplified
initialization mode

Simplified initialization mode has increased flexibility, such as accepting an empty
matrix ([]) for Initial output. These abilities make it easier to migrate custom libraries
and models from classic to simplified initialization mode. For more information, see
Conditional Subsystem Output Initialization.

Simplified display of sorted execution order

The display of sorted execution order is enhanced for subsystems and blocks such as
function-call blocks, making it easier to understand the execution order in a model.

Enhanced model reference rebuild algorithm for MATLAB Function blocks

In conjunction with the Model Configuration > Model Referencing > Rebuild
parameter, Simulink examines a set of known target dependencies when determining
whether they have changed. R2013b adds another known target dependency: MATLAB
files used by MATLAB function blocks.

For details, see Rebuild.

9-7

http://www.mathworks.com/help/releases/R2013b/simulink/ug/conditional-subsystem-initialization.html
http://www.mathworks.com/help/releases/R2013b/simulink/gui/model-referencing-pane.html#bq7cyf9-3

R2013b

Simulation Analysis and Performance

LCC compiler included on Windows 64-bit platform for running
simulations

The Windows 64-bit platform now includes LCC-win64 as the default compiler for
running simulations. You no longer have to install a separate compiler for simulation in
Stateflow and Simulink. You can run simulations in Accelerator and Rapid Accelerator
modes using this compiler. You can also build model reference simulation targets and
accelerate MATLAB System block simulations.

Note: The LCC-win64 compiler is not available as a general compiler for use with the
command-line MEX in MATLAB. It is a C compiler only. You cannot use it for SIL/PIL
modes.

LCC-win64 is used only when another compiler is not configured in MATLAB. To build
MEX files, you must install a compiler. See http://www.mathworks.com/support/
compilers/current_release/.

Signal logging in Rapid Accelerator mode

You can log signals in Rapid Accelerator mode. Signal logging in Rapid Accelerator mode
is similar to signal logging in Normal and Accelerator mode. During model development
and testing, using Rapid Accelerator mode usually speeds up simulation with signal
logging. For details, see Signal Logging in Rapid Accelerator Mode.

Performance Advisor checks for Rapid Accelerator mode and data store
memory diagnostics

Performance Advisor checks have been enhanced to improve simulation and performance
optimization.

A single check compares all four simulation modes before recommending the optimal
choice:

• Normal
• Accelerator

9-8

http://www.mathworks.com/help/releases/R2013b/simulink/ug/exporting-signal-data-using-signal-logging.html#bt0cprf

 Simulation Analysis and Performance

• Rapid Accelerator
• Rapid Accelerator with up-to-date check off

There is another check that compares compiler optimizations if the selected simulation
mode is Accelerator or Rapid Accelerator.

Also, you can now disable runtime diagnostics for data store memory to reduce runtime
overhead and improve simulation speed. For more information, see Diagnostics.

Long long integers in simulation targets for faster simulation on Win64
machines

If your target hardware and your compiler support the C99 long long integer data
type, you can select this data type for code generation and simulation. Using long long
results in more efficient generated code that contains fewer cumbersome operations
and multiword helper functions. This data type also provides more accurate simulation
results for fixed-point and integer simulations. If you are using Microsoft Windows
(64-bit), using long long improves performance for many workflows including using
Accelerator mode and working with Stateflow software.

For more information, see the Enable long long and Number of bits: long long
configuration parameters on the Hardware Implementation Pane.

At the command line, you can use the following new model parameters:

• ProdLongLongMode: Specifies that your C compiler supports the long long data type.
Set this parameter to 'on' to enable ProdBitPerLongLong.

• ProdBitPerLongLong: Describes the length in bits of the C long long data type
supported by the production hardware.

• TargetLongLongMode: Specifies whether your C compiler supports the long long
data type. Set this parameter to 'on' to enable TargetBitPerLongLong.

• TargetBitPerLongLong: Describes the length in bits of the C long long data type
supported by the hardware used to test generated code.

For more information, see Model Parameters.

Auto-insertion of rate transition block

Simulink can now automatically handle rate transitions for periodic tasks even if the
Greatest Common Divisor (GCD) rate is not in the model. Previously, Simulink required

9-9

http://www.mathworks.com/help/releases/R2013b/simulink/diagnostics.html
http://www.mathworks.com/help/releases/R2013b/simulink/gui/hardware-implementation-pane.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/model-parameters.html

R2013b

that a block with the GCD sample rate be present in the model to allow automatic
insertion of the rate transition block. For more information, see Automatically handle
rate transition for data transfer.

Compiled sample time for multi-rate blocks returns cell array of all
sample times

For multi-rate blocks (including subsystems), Simulink now returns the compiled sample
time for the block as a cell array of all the sample rates present in the block. Therefore,
to query the CompiledSampleTime and determine if a subsystem is multi-rate, you no
longer need to loop over all the blocks inside a subsystem or build up a list of sample
times for the subsystem. The subsystem block CompiledSampleTime parameter now
contains that information.

Previously, Simulink returned only the greatest common divisor (GCD) of all sample
rates present in the block. This might cause a problem if the GCD rate did not exist in
the model, thereby causing Simulink Coder to generate empty functions.

To obtain the complete list of sample times in a block, use the following command:

theBlockSampleTimes =

get_param(SubsystemBlock,'CompiledSampleTime');

This is more efficient than querying the sample time for each block and sorting the list.

For more information, see Sample Times in Subsystems.

Compatibility Considerations

Because Simulink now returns the CompiledSampleTime parameter as a cell array of
pairs of doubles (instead of a pair of doubles), some compatibility issues can occur.

Consider a variable blkTs, which has been assigned the compiled sample time of a multi-
rate block.

blkTs = get_param(block,'CompiledSampleTime');

Here are some examples in which the original code works only if blkTs is a pair of
doubles and the block is a single-rate block:

• Example 1

if isinf(blkTs(1))

9-10

http://www.mathworks.com/help/releases/R2013b/simulink/gui/solver-pane.html#brh0_94-1
http://www.mathworks.com/help/releases/R2013b/simulink/gui/solver-pane.html#brh0_94-1
http://www.mathworks.com/help/releases/R2013b/simulink/ug/managing-sample-times-in-subsystems.html

 Simulation Analysis and Performance

 disp('found constant sample time')

end

Since blkTs is now a cell array, Simulink gives the following error message:

Undefined function 'isinf' for input arguments of type 'cell'

Instead, use this code, for which blkTs can be a cell array or a pair of doubles.

if isequal(blkTs, [inf,0])

 disp('found constant sample time')

end

• Example 2

if all(blkTs == [-1,-1])

 disp('found triggered sample time')

end

For the above example, since blkTs is now a cell array, Simulink gives the following
error:

Undefined function 'eq' for input arguments of type 'cell'

Instead, use this code, for which blkTs can be a cell array or a pair of doubles.

if isequal(blkTs, [-1,-1])

 disp('found triggered sample time')

end

• Example 3

if (blkTs(1) == -1)

 disp('found a triggered context')

end

Again, since blkTs is now a cell array, Simulink gives the following error:

Undefined function 'eq' for input arguments of type 'cell'

Instead, use this code.

if ~iscell(blkTs)

 blkTs = {blkTs};

end

for idx = 1:length(blkTs)

 thisTs = blkTs{idx};

9-11

R2013b

 if (thisTs(1) == -1)

 disp('found a triggered context')

 end

end

The above code checks for a triggered type sample time (triggered or async). In cases
in which a block has constant sample time ([inf,0]) in addition to triggered or async
or when a block has multiple async rates, this alternative detects sample times in all
such cases.

Improvement to model reference parallel build check in Performance
Advisor

The model reference parallel build check has been improved to take into account parallel
build overhead time when estimating overall overhead time. For more information, see
Check model reference parallel build.

Improved readability in Performance Advisor reports

Tables in the HTML report generated by Performance Advisor now appear in a new
format for improved clarity and readability.

Simulation Data Inspector launch using simplot command

The simplot command now launches the Simulation Data Inspector. The simplot
command is no longer supported and redirects to the Simulation Data Inspector.

Use the Simulation Data Inspector to inspect and compare signal data from simulations.
For more information on using the Simulation Data Inspector, see Validate System
Behavior.

Compatibility Considerations

In R2013b, the simplot command launches the Simulation Data Inspector, and the
return arguments to the function are empty handles. In previous releases, the simplot
command returned handles to the graphics figure.

9-12

http://www.mathworks.com/help/releases/R2013b/simulink/slref/simulink-checks_bth9tg2-2.html#btjp8jy
http://www.mathworks.com/help/releases/R2013b/simulink/validate-system-behavior.html
http://www.mathworks.com/help/releases/R2013b/simulink/validate-system-behavior.html

 Project and File Management

Project and File Management

Impact analysis by exploring modified or selected files to find
dependencies

In Simulink Project, use impact analysis to find the impact of changing particular files.
You can investigate dependencies visually to explore the structure of your project. You
can analyze selected or modified files to find their required and impacted files. Visualize
changes and dependencies in the Impact graph.

Impact analysis can show you how a change will impact other files before making the
change. For example:

• Investigate the potential impact of a change in requirements by finding the design
files linked to the requirements document.

• Investigate change set impact by finding upstream and downstream dependencies of
modified files before committing the changes. This can help you identify design and
test files that might need modifications and find the tests you need to run.

You can label, open, or export the files found by impact analysis. You can use the impact
analysis results to create reports or artifacts describing the impact of a change.

For details, see Perform Impact Analysis.

Option to export impact analysis results to the workspace, batch
processing, or image files

In Simulink Project, after performing impact analysis, you can export the results to a
workspace variable, to batch processing, or to image files. This enables further processing
or archiving of impact analysis results.

For details, see Export Impact Results.

Identification of requirements documents during project dependency
analysis

In Simulink Project, Dependency Analysis searches for requirements documents linked
using the Requirements Management Interface. You can view linked requirements

9-13

http://www.mathworks.com/help/releases/R2013b/simulink/ug/perform-impact-analysis.html
http://www.mathworks.com/help/releases/R2013b/simulink/ug/perform-impact-analysis.html#btzn30l-1

R2013b

documents in Simulink Project and navigate to and from the linked documents. You can
only create or edit Requirements Management links if you have Simulink Verification
and Validation.

Previously, you could find requirements documents only for a single model by generating
a manifest. Now you can find requirements documents linked anywhere in your project.

For details, see Choose Files and Run Dependency Analysis.

Simplified label creation by dragging a label onto files in any view

In Simulink Project, add labels to files by dragging a label onto files. Create labels and
categories of labels from any view. These features simplify label creation and application
without any need to switch view. You can view project labels at the same time as project
files or dependency analysis results.

Previously you could create new labels only at the Labels node, and you could apply a
label to a single file only by opening a dialog box.

For details, see Create Labels and Add Labels to Files.

Shortcut renaming, grouping, and execution from any view using the
Toolstrip

Simulink Project tools for managing shortcuts enable you to:

• Create shortcut groups to organize shortcuts by type, for example, to separate
shortcuts for loading data, opening models, generating code, and running tests.

• Annotate shortcuts to make their purpose visible, without changing the file name or
location of the script or model the shortcut points to, for example, to change a cryptic
file name to a useful string for the shortcut name.

• Execute project shortcuts from any view in Simulink Project using the toolstrip.

These features simplify shortcut management, allowing you to use shortcuts while
viewing your project files or dependency analysis results.

Previously you could view and execute shortcuts only at the Shortcuts node. Now you can
find and execute shortcuts whenever they are needed in the projects workflow without
switching the view.

9-14

http://www.mathworks.com/help/releases/R2013b/simulink/ug/choose-files-and-run-dependency-analysis.html
http://www.mathworks.com/help/releases/R2013b/simulink/ug/create-labels.html
http://www.mathworks.com/help/releases/R2013b/simulink/ug/add-labels-to-files.html

 Project and File Management

For details, see Create Shortcuts to Frequent Tasks, Annotate Shortcuts to Use
Meaningful Names, and Use Shortcuts to Find and Run Frequent Tasks.

9-15

http://www.mathworks.com/help/releases/R2013b/simulink/ug/create-shortcuts-to-frequent-tasks.html
http://www.mathworks.com/help/releases/R2013b/simulink/ug/create-shortcuts-to-frequent-tasks.html#btzyge9-1
http://www.mathworks.com/help/releases/R2013b/simulink/ug/create-shortcuts-to-frequent-tasks.html#btzyge9-1
http://www.mathworks.com/help/releases/R2013b/simulink/ug/use-shortcuts-to-find-and-run-frequent-tasks.html

R2013b

Data Management

Streamlined selection of one or more signals for signal logging

In the Simulink Editor, you no longer need to open the Signal Properties dialog box to
enable signal logging for a signal. Instead:

1 Select one or more signals.
2

Click the Record button arrow and click Log/Unlog Selected Signals.

Simplified modeling of single-precision designs

In R2013b, you can model single-precision designs more easily.

• There is now a model-wide setting that you can use to specify that Simulink use
singles as the default type during data type propagation. See “New option to set
default for underspecified data types” on page 9-16.

• Simulink avoids the use of double data types to achieve strict single design for
operations between singles and integers. In previous releases, Fixed-Point Designer
used double data types in intermediate calculations for higher precision. You might
see a difference in numerical behavior of an operation between earlier releases and
R2013b. See “Operations between singles and integer or fixed-point data types avoid
use of doubles” on page 9-17.

• There is a new Model Advisor check that detects the presence of double data types in
a model. See Identify questionable operations for strict single-precision design.

New option to set default for underspecified data types

There is now a model-wide setting to specify the data type to use if Simulink cannot
infer the type of a signal during data type propagation. You can now choose to set
the default value for underspecified data types to double or single for simulation and
code generation. For embedded designs that target single-precision processors, set the
Default for underspecified data type configuration parameter to single to avoid
introducing double data types. For more information, see Default for underspecified data
type.

9-16

http://www.mathworks.com/help/releases/R2013b/simulink/slref/simulink-checks_bq6d4aa-1.html#btzpiip-1
http://www.mathworks.com/help/releases/R2013b/simulink/gui/optimization-pane-general.html#bt0bqvr-1
http://www.mathworks.com/help/releases/R2013b/simulink/gui/optimization-pane-general.html#bt0bqvr-1

 Data Management

Operations between singles and integer or fixed-point data types avoid use of doubles

Simulink now supports strict single-precision algorithms for mixed single and integer
data types for cast and math operations. Operations, such as cast, multiplication and
division, use single-precision math instead of introducing higher precision doubles for
intermediate calculations in simulation and code generation. You no longer have to
explicitly cast integers or fixed-point inputs of these operations to single precision. To
detect the presence of double data types in your model to help you refine your mixed
single and integer design, use the Model Advisor Identify questionable operations
for strict single-precision design check.

Compatibility Considerations

In R2013b, for both simulation and code generation, Simulink avoids the use of double
data types to achieve strict single design for operations between singles and integers.
In previous releases, Simulink used double data types in intermediate calculations for
higher precision. You might see a difference in the numerical behavior of an operation
between earlier releases and R2013b.

For example, when the cast is from a fixed-point or integer data type to single or vice
versa, the type for intermediate calculations can have a big impact on the numerical
results. Consider:

• Input type: ufix128_En127
• Input value: 1.999999999254942 — Stored integer value is (2^128 -2^100)
• Output type: single

Release Calculation performed by Fixed-Point Designer Output
Result

Design Goal

R2013b Y = single(2^-127) * single(2^128-2^100)

= single(2^-127) * Inf

Inf Strict singles

Previous
releases

Y = single(double(2^-127) * double(2^128 -

2^100))

= single(2^-127 * 3.402823656532e+38)

2 Higher
precision
intermediate
calculation

There is also a difference in the generated code. Previously, Fixed-Point Designer allowed
the use of doubles in the generated code for a mixed multiplication that used single and
integer types.

9-17

R2013b

m_Y.Out1 = (real32_T)((real_T)m_U.In1*(real_T)m_U.In2);

In R2013b, it uses strict singles.

m_Y.Out1=(real32_T)m_U.In1*m_U.In2;

To revert to the numerical behavior of previous releases, insert explicit casting from
integers to doubles for the inputs of these operations.

Connection status visualization and connection method customization for
root inport mapping

The Root Inport Mapping dialog box has the following updates:

• The Root Inport Mapping dialog box now has connection status visualization. If the
Root Inport Mapping status area lists warnings or failures, the software highlights
the Inport block associated with the data. Warnings display as yellow Inport blocks
outlined in orange, failures display as yellow Inport blocks outlined with bold red,
and successes display as normal Inport blocks outlined with blue. Selecting the line
item highlights the associated Inport block. For more information, see Understanding
Mapping Results.

• The root inport mapping capability has a new function, getSlRootInportMap. This
function provides a new connection method for custom mappings. Use this function
when you have a mapping method that is similar to, but not exactly the same as, one
of the existing Simulink root inport mapping methods.

Conversion of numeric variables into Simulink.Parameter objects

You can now convert a numeric variable into a Simulink.Parameter object using a
single step.
myVar = 5; % Define numerical variable in base workspace

% Create data object and assign variable value to data object value

myObject = Simulink.Parameter(myVar);

Previously, you did this conversion using two steps.

myVar = 5; % Define numerical variable in base workspace

myObject = Simulink.Parameter; % Create data object

myObject.Value = myVar; % Assign variable value to data object value

9-18

http://www.mathworks.com/help/releases/R2013b/simulink/slref/inport.html
http://www.mathworks.com/help/releases/R2013b/simulink/ug/import-and-map-data-to-root-level-inports.html#bts3m6c
http://www.mathworks.com/help/releases/R2013b/simulink/ug/import-and-map-data-to-root-level-inports.html#bts3m6c
http://www.mathworks.com/help/releases/R2013b/simulink/slref/getslrootinportmap.html

 Data Management

Model Explorer search options summary hidden by default

To provide more space for displaying search results, the Model Explorer Search Results
pane hides the summary of the search options (such as search criteria) that you used.

To view the search options summary, at the top of the Search Results pane, click the
Expand Search Results button .

Simulink.DualScaledParameter class

The new Simulink.DualScaledParameter class extends the capabilities of the
Simulink.Parameter class. You can define a parameter object that stores two scaled
values of the same physical value. Suppose you want to store temperature measurements
as Fahrenheit or Celsius values. You can define a parameter that stores the temperature
in either measurement scale with a computational method to convert between the dual-
scaled values.

You can use Simulink.DualScaledParameter objects in your model for both
simulation and code generation. The parameter computes the internal value before
simulation or code generation via the computational method, which can be a first-order
rational function. This offline computation results in leaner generated code.

For more information, see Simulink.DualScaledParameter.

Legacy data type specification functions return numeric objects

In previous releases, the following functions returned a MATLAB structure describing a
fixed-point data type:

• float
• sfix
• sfrac
• sint
• ufix
• ufrac
• uint

9-19

http://www.mathworks.com/help/releases/R2013b/simulink/slref/simulink.dualscaledparameter.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/float.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/sfix.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/sfrac.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/sint.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/ufix.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/ufrac.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/uint.html

R2013b

Effective R2013b, they return a Simulink.NumericType object. If you have existing
models that use these functions as parameters to dialog boxes, the models continue to
run as before, and there is no need to change any model settings.

These functions do not offer full Data Type Assistant support. To benefit from this
support, use fixdt instead.

Function Return Value in
Previous Releases —
MATLAB structure

Return Value Effective R2013b — NumericType

float('double') Class: 'DOUBLE' DataTypeMode: 'Double'

float('single') Class: 'SINGLE' DataTypeMode: 'Single'

sfix(16) Class: 'FIX'

 IsSigned: 1

 MantBits: 16

DataTypeMode: 'Fixed-point: unspecified scaling'

 Signedness: 'Signed'

 WordLength: 16

ufix(7) Class: 'FIX'

 IsSigned: 0

 MantBits: 7

DataTypeMode: 'Fixed-point: unspecified scaling'

 Signedness: 'Unsigned'

 WordLength: 7

sfrac(33,5) Class: 'FRAC'

 IsSigned: 1

 MantBits: 33

 GuardBits: 5

DataTypeMode: 'Fixed-point: binary point scaling'

 Signedness: 'Signed'

 WordLength: 33

 FractionLength: 27

ufrac(44) Class: 'FRAC'

 IsSigned: 0

 MantBits: 44

 GuardBits: 0

DataTypeMode: 'Fixed-point: binary point scaling'

 Signedness: 'Unsigned'

 WordLength: 44

 FractionLength: 44

sint(55) Class: 'INT'

 IsSigned: 1

 MantBits: 55

DataTypeMode: 'Fixed-point: binary point scaling'

 Signedness: 'Signed'

 WordLength: 55

 FractionLength: 0

uint(77) Class: 'INT'

 IsSigned: 0

 MantBits: 77

DataTypeMode: 'Fixed-point: binary point scaling'

 Signedness: 'Unsigned'

 WordLength: 77

 FractionLength: 0

Compatibility Considerations

MATLAB Code

9-20

http://www.mathworks.com/help/releases/R2013b/simulink/slref/simulink.numerictype.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/fixdt.html

 Data Management

MATLAB code that depends on the return arguments of these functions being a structure
with fields named Class, MantBits or GuardBits, no longer works correctly. Change
the code to access the appropriate properties of a NumericType object, for example,
DataTypeMode, Signedness, WordLength, FractionLength, Slope, and Bias.

C Code

Update C code that expects the data type of parameters to be a legacy structure to handle
NumericType objects instead. For example, if you have S-functions that take legacy
structures as parameters, update these S-functions to accept NumericType objects.

MAT-files

Effective in R2013b, if you open a Simulink model that uses a MAT-file that contains
a data type specification created using the legacy functions, the model uses the same
data types and behaves in the same way as in previous releases but Simulink generates
a warning. To eliminate the warning, recreate the data type specifications using
NumericType objects, and save the MAT-file.

You can use the fixdtupdate function to update a data type specified using the
legacy structure to use a NumericType. For example, suppose you saved a data type
specification in a MAT-file in a previous release as follows:

oldDataType = sfrac(16);

save myDataTypeSpecification oldDataType

Use fixdtUpdate to recreate the data type specification to use NumericType:

load DataTypeSpecification

fixdtUpdate(oldDataType)

ans =

 NumericType with properties:

 DataTypeMode: 'Fixed-point: binary point scaling'

 Signedness: 'Signed'

 WordLength: 16

 FractionLength: 15

 IsAlias: 0

 DataScope: 'Auto'

 HeaderFile: ''

 Description: ''

For more information, at the MATLAB command line, enter:

9-21

R2013b

fixdtUpdate

Root Inport Mapping Error Messages

The error message handling has been improved for root import mapping at the
consistency check phase. The Simulation Diagnostics Viewer now displays these error
messages.

Root inport mapping example

The Using Simulink Mapping Modes in Custom Mapping Functions example shows how
to use the getSlRootInportMap function to create a mapping object. This example uses a
mapping mode similar to the Simulink block name mapping mode.

9-22

http://www.mathworks.com/help/releases/R2013b/simulink/slref/getslrootinportmap.html

 Connection to Educational Hardware

Connection to Educational Hardware

Ability to run models on target hardware from the Simulink toolbar

You can use the Deploy to Hardware or Run button on the Simulink toolbar to run
models on target hardware.

To enable these buttons, first configure your model to use for Run on Target Hardware.

1 If you have not done so already, use supportPackageInstaller and install a Simulink
support package.

2 In a model, select Tools > Run on Target Hardware > Prepare to Run.

The Configuration Parameters dialog box opens and displays the Run on Target
Hardware pane.

3 Set the Target hardware parameter to match your target hardware.

After configuring the model, you can use either button:

• To deploy the model, click Deploy to Hardware. The model runs as a standalone
application on the target hardware.

• To use External mode, set Simulation mode to External, and then click Run. In
External mode, you can tune parameters and monitor a model running on your target
hardware.

Note: This feature works only with Simulink support packages. The names of these
support packages begin with “Simulink Support Package for...”

For more information, see What is “Run on Target Hardware”?.

9-23

http://www.mathworks.com/help/releases/R2013b/simulink/slref/supportpackageinstaller.html
http://www.mathworks.com/help/releases/R2013b/simulink/ug/about-run-on-target-hardware-feature.html

R2013b

Note: Some target hardware does not support External mode. For more information,
consult the documentation for the specific target hardware.

Support for Arduino hardware available on Mac OS X

You can use Simulink Support Package for Arduino Hardware on Apple Mac OS X
platform. This includes support for Arduino Mega 2560, Arduino Uno, Arduino Nano, and
Arduino Ethernet Shield hardware.

To use this feature, install the Simulink Support Package for Arduino Hardware, as
described in Install Support for Arduino Hardware.

Support for Arduino Ethernet Shield and Arduino Nano 3.0 hardware

You can use Simulink Support Package for Arduino Hardware with the Arduino
Ethernet Shield hardware and Arduino Nano 3.0 hardware. The block library for Arduino
Ethernet Shield hardware includes TCP/IP and UDP blocks that enable you to design
network-enabled embedded systems.

To use this feature, install the Simulink Support Package for Arduino Hardware, as
described in Install Support for Arduino Hardware.

The block library for the Arduino Ethernet Shield hardware includes the following
blocks:

• Arduino TCP/IP Send and Arduino TCP/IP Receive enable TCP/IP communications
with networked devices using an Ethernet port.

• Arduino UDP Send and Arduino UDP Receive enable UDP communications with
networked devices using an Ethernet port.

For more information about this feature, see the Arduino Hardware topic.

9-24

http://www.mathworks.com/help/releases/R2013b/simulink/ug/install-target-for-arduino-hardware.html
http://www.mathworks.com/help/releases/R2013b/simulink/ug/install-target-for-arduino-hardware.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/arduinotcpipsend.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/arduinotcpipreceive.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/arduinoudpsend.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/arduinoudpreceive.html
http://www.mathworks.com/help/releases/R2013b/simulink/arduino.html

 Signal Management

Signal Management

Port number display to help resolve error messages

You can display the port numbers in a block that an error message highlights by
hovering over the block input or output ports. For details, see Display Port Numbers
When Addressing Errors.

Enforced bus diagnostic behavior

For models that use bus primitives, set the Configuration Parameters > Diagnostics
> Connectivity > Mux blocks used to create bus signals diagnostic to error. Bus
primitives include the Bus Creator, Bus Selector, and Bus Assignment blocks, as well as
bus objects.

R2013b enforces setting the diagnostic to error. Benefits of setting this diagnostic to
error include:

• Prevents introducing Mux/bus mixtures into your model. For information about the
problems with that mixture, see Prevent Bus and Mux Mixtures.

• Improves handling of feedback loops.
• Supports important signal features, including:

• Nonzero initialization of bus signals
• Bus support for blocks such as Constant, Data Store Memory, From File, From

Workspace, To File, and To Workspace
• Signal label propagation enhancements
• Arrays of buses

Compatibility Considerations

When you compile (update or simulate) a model in R2013b, Simulink analyzes the model
to determine the extent to which the model uses Mux blocks to create bus signals. The
table describes how Simulink handles different kinds of models at compile time, in
relationship to the diagnostic.

9-25

http://www.mathworks.com/help/releases/R2013b/simulink/ug/display-port-numbers-for-blocks-highlighted-by-error-messages.html
http://www.mathworks.com/help/releases/R2013b/simulink/ug/display-port-numbers-for-blocks-highlighted-by-error-messages.html
http://www.mathworks.com/help/releases/R2013b/simulink/ug/avoiding-mux-bus-mixtures.html

R2013b

Model Configuration Simulink Actions at Compile
Time

Your Required Actions

No bus primitives or muxes
that involve different data
types

Displays no warning, error,
or upgrade message related
to this diagnostic

Sets diagnostic to error
when you save the model

None

Bus primitives and
diagnostic is set to error

None None

No bus primitives, but one
or more mux with different
data types

Displays an error message
prompting you to launch the
Upgrade Advisor

Run the Upgrade Advisor
and compile your model.

Bus primitives and
diagnostic set to Warning or
None

Displays an error message
prompting you to launch the
Upgrade Advisor

Run the Upgrade Advisor
and set the diagnostic to
error.

9-26

 Block Enhancements

Block Enhancements

Improved performance of LUT block intermediate calculations

Blocks in the Lookup Tables library have a new internal rule for fixed-point data types
to enable faster hardware instructions for intermediate calculations (with the exception
of the Direct Lookup Table (n-D), Prelookup and Lookup Table Dynamic blocks). To use
this new rule, select Speed for the Internal Rule Priority parameter in the dialog box.
Select Precision to use the internal rule in R2013a.

Name changes that unify storage class parameters

The following parameters have been renamed to unify the names of storage class
parameters.

Old Name New Name

RTWStateStorageClass StateStorageClass

CodeGenStateStorageClass StateStorageClass

The blocks affected by this name change are Delay, Unit Delay, Memory, Discrete
State-Space, Discrete Zero-Pole, Discrete Filter, Discrete Transfer Function, Data Store
Memory, and Discrete-Time Integrator.

Compatibility Considerations

Simulink will not support the old parameter names in a future release. If you use the old
parameter names in your code to programmatically set parameter values, replace them
with the new names.

Warnings when using old parameter names with spaces

Parameter names that include spaces (including block type names) from Simulink
Version 1.3 (1994) and earlier now warn. Do not use parameter names with spaces.

Compatibility Considerations

Old parameter names that include spaces (including block type names) from Simulink
Version 1.3 (1994) and earlier now cause a warning if you use them with get_param,

9-27

R2013b

set_param, find_system, or add_block. Messages direct you to the new parameter
name if it exists.

Strictly monotonically increasing time values on Repeating Sequence
block

The Time values parameter in the Repeating Sequence block can take only strictly
monotonically increasing values. In R2013a, this parameter could take duplicate time
values. Run the Upgrade Advisor check “Check model for known block upgrade issues” to
identify this issue in your model.

pow function in Math function block that supports Code Replacement
Library (CRL)

The Math Function block supports the Code Replacement Library for the pow function,
which is useful if you use code generation for models that use this function. For more
information, see the Math Function block.

Continuous Linear Block improvements, such as diagnostics, readability,
and stricter checks

The Continuous library blocks State-Space, Transfer Fcn, and Zero-Pole have been
enhanced as follows:

• Improved error diagnostics.
• More readable generated code for large matrices.
• Stricter checks for changes made to tunable parameters at run time.
• Unused tunable parameters removed from generated code.
• Ability for the State-Space block to act as a source block. This change enables the

modeling of autonomous linear state-space systems.
• The following changes in the Transfer Fcn block:

• Computation of time-domain realization has been enhanced for better performance
and error diagnostics

• Support of sparse Jacobian computation for reduced memory usage, better implicit
solver support, and improved structural analysis

9-28

http://www.mathworks.com/help/releases/R2013b/simulink/slref/mathfunction.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/statespace.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/transferfcn.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/zeropole.html

 MATLAB Function Blocks

MATLAB Function Blocks

Code generation for Statistics Toolbox and Phased Array System Toolbox

Code generation now supports more than 100 Statistics Toolbox™ functions. For
implementation details, see Statistics Toolbox Functions.

Code generation now supports most of the Phased Array System Toolbox™ functions and
System objects. For implementation details, see Phased Array System Toolbox Functions
and Phased Array System Toolbox System Objects.

Toolbox functions for code generation

For implementation details, see Functions Supported for C/C++ Code Generation —
Alphabetical List.

Data Type Functions

• narginchk

Programming Utilities

• mfilename

Specialized Math

• psi

Computer Vision System Toolbox Classes and Functions

• extractFeatures
• detectSURFFeatures
• disparity
• detectMSERFeatures
• detectFASTFeatures
• vision.CascadeObjectDetector
• vision.PointTracker
• vision.PeopleDetector

9-29

http://www.mathworks.com/help/releases/R2013b/simulink/ug/functions-supported-for-code-generation--categorical-list.html#btwz3ma
http://www.mathworks.com/help/releases/R2013b/simulink/ug/functions-supported-for-code-generation--categorical-list.html#bt1pnss
http://www.mathworks.com/help/releases/R2013b/simulink/ug/system-objects-supported-for-code-generation.html#bt1pn_u
http://www.mathworks.com/help/releases/R2013b/simulink/ug/functions-supported-for-code-generation--alphabetical-list.html
http://www.mathworks.com/help/releases/R2013b/simulink/ug/functions-supported-for-code-generation--alphabetical-list.html
http://www.mathworks.com/help/releases/R2013b/matlab/ref/narginchk.html
http://www.mathworks.com/help/releases/R2013b/matlab/ref/mfilename.html
http://www.mathworks.com/help/releases/R2013b/matlab/ref/psi.html
http://www.mathworks.com/help/releases/R2013b/vision/ref/extractfeatures.html
http://www.mathworks.com/help/releases/R2013b/vision/ref/detectsurffeatures.html
http://www.mathworks.com/help/releases/R2013b/vision/ref/disparity.html
http://www.mathworks.com/help/releases/R2013b/vision/ref/detectmserfeatures.html
http://www.mathworks.com/help/releases/R2013b/vision/ref/detectfastfeatures.html
http://www.mathworks.com/help/releases/R2013b/vision/ref/vision.cascadeobjectdetectorclass.html
http://www.mathworks.com/help/releases/R2013b/vision/ref/vision.pointtrackerclass.html
http://www.mathworks.com/help/releases/R2013b/vision/ref/vision.peopledetectorclass.html

R2013b

• cornerPoints
• MSERRegions
• SURFPoints

External C library integration using coder.ExternalDependency

You can define the interface to external code using the new
coder.ExternalDependency class. Methods of this class update the compile and
build information required to integrate the external code with MATLAB code. In
your MATLAB code, you can call the external code without needing to update build
information. See coder.ExternalDependency.

Updating build information using coder.updateBuildInfo

You can use the new function coder.updateBuildInfo to update build information.
For example:

coder.updateBuildInfo('addLinkFlags','/STACK:1000000');

adds a stack size option to the linker command line. See coder.updateBuildInfo.

Conversion of MATLAB expressions into C constants using coder.const

You can use the new function coder.const to convert expressions and function calls to
constants at compile time. See coder.const.

Highlighting of constant function arguments in the compilation report

The compilation report now highlights constant function arguments and displays them
in a distinct color. You can display the constant argument data type and value by placing
the cursor over the highlighted argument. You can export the constant argument value to
the base workspace where you can display detailed information about the argument.

For more information, see Viewing Variables in Your MATLAB Code.

coder.target syntax change

The new syntax for coder.target is:

tf = coder.target('target')

9-30

http://www.mathworks.com/help/releases/R2013b/vision/ref/cornerpointsclass.html
http://www.mathworks.com/help/releases/R2013b/vision/ref/mserregionsclass.html
http://www.mathworks.com/help/releases/R2013b/vision/ref/surfpointsclass.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/coder.externaldependencyclass.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/coder.updatebuildinfo.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/coder.const.html
http://www.mathworks.com/help/releases/R2013b/simulink/ug/matlab-function-reports.html#br190a7-12

 MATLAB Function Blocks

For example, coder.target('MATLAB') returns true when code is running in
MATLAB. See coder.target.

You can use the old syntax, but consider changing to the new syntax. The old syntax will
be removed in a future release.

LCC compiler included on Windows 64-bit platform for running
simulations

The Windows 64-bit platform now includes LCC-win64 as the default compiler for
running simulations. You no longer have to install a separate compiler for simulation of
MATLAB Function blocks.

LCC-win64 is used only when another compiler is not configured in MATLAB.

9-31

http://www.mathworks.com/help/releases/R2013b/simulink/slref/coder.target.html

R2013b

Modeling Guidelines

Modeling guidelines for high-integrity systems

The following are new modeling guidelines to develop models and generate code for high-
integrity systems:

• hisl_0024: Inport interface definition
• hisl_0025: Design min/max specification of input interfaces
• hisl_0026: Design min/max specification of output interfaces
• hisl_0027: Usage of Signed Square Root blocks
• hisl_0028: Usage of Reciprocal Square Root blocks

9-32

http://www.mathworks.com/help/releases/R2013b/simulink/mdl_gd/ports-subsystems.html#btwmz2x-1
http://www.mathworks.com/help/releases/R2013b/simulink/mdl_gd/ports-subsystems.html#btwm0x7-1
http://www.mathworks.com/help/releases/R2013b/simulink/mdl_gd/ports-subsystems.html#btzyh1i-1
http://www.mathworks.com/help/releases/R2013b/simulink/mdl_gd/math-operations.html#btx0x7h-1
http://www.mathworks.com/help/releases/R2013b/simulink/mdl_gd/math-operations.html#btx01rx-1

 Model Advisor

Model Advisor

Collapsible content within Model Advisor reports

The Model Advisor report now collapses the results, making it easier to navigate through
the report.

Reorganization of Model Advisor checks

Checks previously provided with Simulink in the Model Advisor Embedded Coder folder
are now available with either Simulink Coder or Embedded Coder. For a list of checks
available with each product, see:

• Simulink Coder Checks
• Embedded Coder Checks

Check for strict single precision usage

The new Identify questionable operations for strict single-precision design check
identifies blocks that introduce double-precision operations. Use this check to help you
refine your strict single design.

9-33

http://www.mathworks.com/help/releases/R2013b/rtw/ref/embedded-codersimulink-coder-checks.html
http://www.mathworks.com/help/releases/R2013b/ecoder/ref/embedded-codersimulink-coder-checks.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/simulink-checks_bq6d4aa-1.html#btzpiip-1

R2013a
Version: 8.1

New Features

Bug Fixes

Compatibility Considerations

R2013a

New Simulink Editor

Reordering of tabs in tabbed windows

You can rearrange the order of tabs in a Simulink Editor window. For example, if
you have opened several subsystems, to make it easier to access the tab for the last
subsystem that you opened, you could select that tab and drag it to make it the first tab
on the left.

Scalable vector graphics for mask icons

Images in .svg format can be used with the image command for creating block mask
images in Simulink.

Simulation Stepper Default Value Change

The default value of the Interval between stored back steps stepping option is now
10. In the previous release, this value was 1.

10-2

 Component-Based Modeling

Component-Based Modeling

Direct active variant control via logical expressions

Variant control can accept a variant object or any condition expression. Defining
variant objects for use in modeling variants requires saving variant objects external to
a model file. Using direct expressions in variant control reduces complexity. For more
information, see Variant Systems.

Live update for variant systems and commented-out blocks

You can control active variants by setting variant controls. When you modify active
variants, the display refreshes automatically; you do not need to use Update Diagram.
You can also comment out blocks in your model to exclude them from simulation. For
more information, see Variant Systems.

Masking of linked library blocks

You can now create masks on linked blocks. Masking a linked block (one that already
has a mask) creates a stack of masks. Simulink libraries can contain blocks that become
library links when copied to a model. Masking such blocks previously involved wrapping
them inside a subsystem and creating a mask on that subsystem. Masking linked
blocks instead uses less memory and management overhead. For more information, see
Masking Linked Blocks.

Target profiling for concurrent execution to visualize task execution times
and task-to-core assignment

A new pane, Profile Report on the Concurrent Execution dialog box, enables the
visualization of task execution times and task-to-core affinitization. You can profile using
Simulink Coder (GRT) and Embedded Coder (ERT) targets. For more information, see
Profile and Evaluate.

The sldemo_concurrent_execution example has been updated to reflect the use of
this capability.

10-3

http://www.mathworks.com/help/releases/R2013a/simulink/variant-systems.html
http://www.mathworks.com/help/releases/R2013a/simulink/variant-systems.html
http://www.mathworks.com/help/releases/R2013a/simulink/ug/creating-a-mask-hierarchy.html
http://www.mathworks.com/help/releases/R2013a/simulink/ug/building-and-downloading-the-model-to-a-multicore-target.html#bs4bgcj

R2013a

Incremental block-to-task mapping workflow support enabled by
automatic block-to-task assignment for multicore execution on embedded
targets

This support allows for the partial mapping of blocks to tasks, allowing you to specify
task assignments only for the blocks you are interested in. For more information, see
Analyze Baseline.

With this change, the Map blocks to tasks pane no longer has a Get Default
Configuration button.

PIL and SIL modes for concurrent execution

The following simulation modes are now supported for concurrent execution:

• Processor-in-the-loop (PIL)
• Software-in-the-loop (SIL)

Parameterized task periods for concurrent execution

You can now parameterize task periods for concurrent execution using variables from the
MATLAB base workspace.

Relaxed configuration parameter setting requirements

Configuration requirements for model referencing have been removed. The following
parameters no longer need to be the same for top and referenced models:

• Templates > Target operating system
• Solver > Allow tasks to execute concurrently on target

10-4

http://www.mathworks.com/help/releases/R2013a/simulink/ug/setting-configuration-defaults-using-automatic-analysis.html

 Connection to Educational Hardware

Connection to Educational Hardware

Support for Gumstix Overo hardware

Run Simulink models on Gumstix Overo hardware. Tune parameter values in the model,
and receive data from the model, while it is running on Gumstix Overo hardware.

Use the Simulink Support Package for Gumstix Overo Hardware block library to
access Gumstix Overo peripherals:

• Overo UDP Receive and Overo UDP Send — Communicate with networked devices
using an Ethernet port.

• Overo ALSA Audio Capture — Capture audio from sound card using ALSA
• Overo ALSA Audio Playback — Send audio to sound card for playback using ALSA
• Overo V4L2 Video Capture — Capture video from USB camera using V4L2
• Overo SDL Video Display — Display video using SDL
• Overo GPIO Read and Overo GPIO Write — Communicate with external devices

using GPIO pins. The blocks provide diagrams that help you locate specific GPIO
pins.

• Overo LED — Illuminate built-in LEDs on your target hardware. The block provides a
diagram that helps you locate specific LEDs.

• Overo eSpeak Text to Speech — Convert text to speech for output to the default audio
device.

To get these capabilities and the block library, enter targetinstaller in a MATLAB
Command Window. Then, use Support Package Installer to install the support package
for Gumstix Overo hardware. For more information, see the Gumstix Overo topic.

After installing the support package, you can open the block library by entering
overolib in the MATLAB Command Window. The Simulink Support Package for
Gumstix Overo Hardware block library is also available in the Simulink Library
Browser.

Support for Raspberry Pi hardware

Run Simulink models on Raspberry Pi hardware. Tune parameter values in the model,
and receive data from the model, while it is running on Raspberry Pi hardware.

10-5

http://www.mathworks.com/help/releases/R2013a/simulink/slref/overoudpreceive.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/overoudpsend.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/overoalsaaudiocapture.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/overoalsaaudioplayback.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/overov4l2videocapture.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/overosdlvideodisplay.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/overogpioread.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/overogpiowrite.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/overoled.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/overoespeaktexttospeech.html
http://www.mathworks.com/help/releases/R2013a/simulink/gumstix-overo.html

R2013a

Use the Simulink Support Package for Raspberry Pi Hardware block library to
access Raspberry Pi peripherals:

• Raspberry Pi UDP Receive and Raspberry Pi UDP Send — Communicate with
networked devices using an Ethernet port.

• Raspberry Pi ALSA Audio Capture — Capture audio from sound card using ALSA
• Raspberry Pi ALSA Audio Playback — Send audio to sound card for playback using

ALSA
• Raspberry Pi V4L2 Video Capture — Capture video from USB camera using V4L2
• Raspberry Pi SDL Video Display — Display video using SDL
• Raspberry Pi GPIO Read and Raspberry Pi GPIO Write — Communicate with

external devices using GPIO pins. The blocks provide diagrams that help you locate
specific GPIO pins.

• Raspberry Pi LED — Illuminate built-in LEDs on your target hardware. The block
provides a diagram that helps you locate specific LEDs.

• Raspberry Pi eSpeak Text to Speech — Convert text to speech for output to the
default audio device.

To get these capabilities and the block library, enter targetinstaller in a MATLAB
Command Window. Then, use Support Package Installer to install the support package
for Raspberry Pi hardware. For more information, see the Raspberry Pi topic.

After installing the support package, you can open the block library by entering pilib
in the MATLAB Command Window. The Simulink Support Package for Raspberry Pi
Hardware block library is also available in the Simulink Library Browser.

Blocks for GPIO, LED, and eSpeak Text to Speech on BeagleBoard

The block libraries for BeagleBoard hardware include four new blocks:

• BeagleBoard GPIO Read and BeagleBoard GPIO Write — Communicate with
external devices using GPIO pins.

• BeagleBoard LED — Illuminate built-in LEDs on your target hardware.
• BeagleBoard eSpeak Text to Speech — Convert text to speech for output to the default

audio device.

To get these blocks, enter targetinstaller in a MATLAB Command Window. Then, use
Support Package Installer to install the support package for BeagleBoard hardware. For
more information, see the BeagleBoard topic.

10-6

http://www.mathworks.com/help/releases/R2013a/simulink/slref/raspberrypiudpreceive.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/raspberrypiudpsend.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/raspberrypialsaaudiocapture.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/raspberrypialsaaudioplayback.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/raspberrypiv4l2videocapture.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/raspberrypisdlvideodisplay.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/raspberrypigpioread.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/raspberrypigpiowrite.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/raspberrypiled.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/raspberrypiespeaktexttospeech.html
http://www.mathworks.com/help/releases/R2013a/simulink/raspberry-pi.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/beagleboardgpioread.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/beagleboardgpiowrite.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/beagleboardled.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/beagleboardespeaktexttospeech.html
http://www.mathworks.com/help/releases/R2013a/simulink/beagleboard.html

 Connection to Educational Hardware

After installing the support package, you can open the updated block library. In a
MATLAB Command Window, enter beagleboardlib. You can also access these block
libraries through the Simulink Library Browser.

Blocks for GPIO, LED, and eSpeak Text to Speech on PandaBoard

The block libraries for PandaBoard hardware include four new blocks:

• PandaBoard GPIO Read and PandaBoard GPIO Write — Communicate with external
devices using GPIO pins.

• PandaBoard LED — Illuminate built-in LEDs on your target hardware.
• PandaBoard eSpeak Text to Speech — Convert text to speech for output to the default

audio device.

To get these blocks, enter supportPackageInstaller in a MATLAB Command
Window. Then, use Support Package Installer to install the support package for
PandaBoard hardware. For more information, see the PandaBoard topic.

After installing the support package, you can open the updated block library. In a
MATLAB Command Window, enter pandaboardlib. You can also access these block
libraries through the Simulink Library Browser.

Blocks for Compass and IR Receiver sensors on LEGO MINDSTORMS NXT

The block library for LEGO MINDSTORMS NXT hardware includes two new blocks:

• LEGO MINDSTORMS NXT Compass Sensor — Read the magnetic heading of the
compass sensor.

• LEGO MINDSTORMS NXT IR Receiver Sensor — Receive IR signals from of a LEGO
Power Functions IR Speed Remote Control.

To get these blocks, in a MATLAB Command Window, enter targetinstaller. Then, use
Support Package Installer to install the support package for LEGO MINDSTORMS NXT
hardware. For more information, see the LEGO MINDSTORMS NXT topic.

After installing the support package, you can open the updated block library. In a
MATLAB Command Window, enter legonxtlib. The block library is also available in
the Simulink Library Browser.

10-7

http://www.mathworks.com/help/releases/R2013a/simulink/slref/pandaboardgpioread.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/pandaboardgpiowrite.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/pandaboardled.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/pandaboardespeaktexttospeech.html
http://www.mathworks.com/help/releases/R2013a/simulink/pandaboard.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/legomindstormsnxtcompasssensor.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/legomindstormsnxtirreceiversensor.html
http://www.mathworks.com/help/releases/R2013a/simulink/lego-mindstorms-nxt.html

R2013a

Project and File Management

Simplified scripting interface for automating Simulink Project tasks

Simulink Projects provide a new API with shorter commands for automating project
tasks with file and label management.

See Simulink Projects for links to project functions.

Compatibility Considerations

The new Simulink Projects API replaces the class
Simulink.ModelManagement.Project.CurrentProject and its methods.
Simulink.ModelManagement.Project.CurrentProject will be removed in a future
release. Instead, use simulinkproject and related functions for project manipulation.

Option to use elements from multiple templates when creating a new
project

When you create a new project, you can select multiple templates to apply. You can select
templates directly on the New Project menu.

See Use Templates to Create Standard Project Settings.

Saving and reloading of dependency analysis results

The Simulink Project Tool remembers the results of previous dependency analysis and
saves the results with your project. You can view your previous results without having to
run time-consuming analysis again. You can also save and reload previous results.

See Analyze Project Dependencies.

Robust loading of projects with conflicted metadata project definition files

The Simulink Project Tool now has tolerance for loading projects with conflicts in
metadata project definition files. You can load the conflicted project and resolve the
conflicts. In previous releases you could not load a project with conflicts in the metadata.

10-8

http://www.mathworks.com/help/releases/R2013a/simulink/simulink-projects.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/simulinkproject.html
http://www.mathworks.com/help/releases/R2013a/simulink/ug/use-templates-to-create-standard-project-settings.html
http://www.mathworks.com/help/releases/R2013a/simulink/ug/project-dependency-analysis.html

 Project and File Management

New project preferences to control logging and warnings

Simulink Project Tool has a new Preferences dialog where you can control options for
logging and warnings.

10-9

R2013a

Data Management

Fixed-Point Advisor support for model reference

The Fixed-Point Advisor now performs checks on referenced models. It checks the entire
model reference hierarchy against fixed-point guidelines. The Advisor also provides
guidance about model configuration settings and unsupported blocks to help you prepare
your model for conversion to fixed point.

Arrays of buses loading and logging

You can log array of buses signal data using signal logging. For details, see step 5 in Set
Up a Model to Use Arrays of Buses.

You can load array of buses data to a root Inport block. For details, see Import Array of
Buses Data.

Root Inport Mapping tool changes

The following are changes to the Root Inport Mapping tool:

• The Root Inport Mapping tool can now import the following additional data formats
from a MAT-file:

• Array of buses
• Asynchronous function-call signals

• A new button, Map Signals, has been added to the Mapping Mode section of the
tool. Use this button to map the data to the root-level ports. Then, use the Apply or
OK buttons to commit the changes to the model.

• The Status area of the tool has been visually updated to better display the mapping
status.

• A new function, getInputString, enables you to create a comma-separated list of
variables to be mapped.

For more information, see Import and Map Data to Root-Level Inports.

New Root Inport Mapping Examples

The following examples show how to use the Root Inport Mapping dialog box:

10-10

http://www.mathworks.com/help/releases/R2013a/simulink/ug/arrays-of-buses-in-models.html#btn0raw-1
http://www.mathworks.com/help/releases/R2013a/simulink/ug/arrays-of-buses-in-models.html#btn0raw-1
http://www.mathworks.com/help/releases/R2013a/simulink/ug/importing-structures-of-matlab-timeseries-objects-for-bus-signals-to-a-root-level-input-port.html#btodj0v
http://www.mathworks.com/help/releases/R2013a/simulink/ug/importing-structures-of-matlab-timeseries-objects-for-bus-signals-to-a-root-level-input-port.html#btodj0v
http://www.mathworks.com/help/releases/R2013a/simulink/slref/getinputstring.html
http://www.mathworks.com/help/releases/R2013a/simulink/ug/import-and-map-data-to-root-level-inports.html

 Data Management

• Converting Test Harness Model to Harness-Free Model

The slexAutotransRootInportsExample example shows how to convert a harness
model using Signal Builder block as an input to a harness-free model with root
inports.

• Custom Mapping for External Inputs of a Model

This example, available from Simulink > Simulink Examples > Modeling
Features, shows how to create a custom mapping function for mapping data to root-
level input ports.

Level-1 data classes not supported

Simulink no longer supports level-1 data classes. Extend Simulink data classes using
MATLAB class syntax instead.

For more information, see Define Data Classes.

To upgrade your level-1 data classes, see Upgrade Level-1 Data Classes.

Compatibility Considerations

When you upgrade your level-1 data classes, the way that MATLAB code is generated
and model files are loaded remains the same. However, you may encounter errors if your
code includes the following capabilities specific to level-1 data classes:

• Inexact property names such as a.datatype instead of the stricter a.DataType.
• Vector matrix containing Simulink.Parameter and Simulink.Signal data

objects. Previously, using level-1 data classes, you could define a vector matrix v as
follows:

a = Simulink.Signal;

b = Simulink.Parameter;

v = [a b];

Such mixed vector matrices are no longer supported.

In these cases, modify your code to replace these capabilities with those supported by
MATLAB class syntax. For more information on how to make these replacements, see
Begin Using Object-Oriented Programming in MATLAB documentation.

10-11

http://www.mathworks.com/help/releases/R2013a/simulink/ug/simulink-data-class-extension-using-matlab-class-syntax.html
http://www.mathworks.com/help/releases/R2013a/simulink/ug/upgrading-level-1-data-classes-to-level-2.html
http://www.mathworks.com/help/releases/R2013a/matlab/matlab_oop/begin-using-object-oriented-programming.html

R2013a

Simulink data type classes do not support inexact enumerated property
value matching

Previously, Simulink data type classes permitted partial enumerated property
value matching and did not enforce case sensitivity. For example, after creating a
Simulink.NumericType data type object

a = Simulink.NumericType;

you could set the value of property DataTypeMode of the object by using one of the
following commands:

• Partial matching of enumerated property value:

a.DataTypeMode = 's';

Here, 's' is equivalent to 'Single'.
• Case-insensitive matching of enumerated property value:

a.DataTypeMode = 'Fixed-Point: binary point scaling';

Here, 'Fixed-Point: binary point scaling' is equivalent to 'Fixed-point:
binary point scaling'.

Now, Simulink data type classes do not permit partial or case-insensitive matches of
enumerated property values.

Compatibility Considerations

You may encounter errors or warnings if your code relies on setting enumerated property
values of data type objects using inexact matches. In these case, replace your code so
that these property values are set using exact matches. For example, after creating a
Simulink.NumericType data type object

b = Simulink.NumericType;

set the value of property DataTypeMode using the following command:

b.DataTypeMode = 'Single';

Tip: Tab completion works with enumerated properties. For example, if you enter a
property name followed by an equal sign, MATLAB pops up a selection box with a list of
values for that property.

10-12

 Simulation Analysis and Performance

Simulation Analysis and Performance

Simulation Performance Advisor report that shows both check results and
actions taken

Performance Advisor HTML report now include actions in addition to checks. For more
information, see View Performance Advisor Reports.

Improved simulation performance when stepping back is enabled

The performance of stepping back using the Simulation Stepper has been improved. For
more information on the Simulation Stepper, see Simulation Stepping.

Simulation Data Inspector run-configuration options for names and
placement in run list

When managing many runs in the Simulation Data Inspector, you can specify whether
to add new runs at the top or bottom of the Signal Browser table. In addition, you can
customize automatic naming of new runs added to the Simulation Data Inspector. For
more information, see Run Management Configuration.

Arrays of buses displayed in Simulation Data Inspector

The Simulation Data Inspector records logged arrays of buses. After recording an array
of buses, the Simulation Data Inspector can display this data in a hierarchical format.

Simulation Data Inspector overwrite run specification

In the Simulation Data Inspector, you can overwrite a previously recorded run with
a new run using the Overwrite Run button. Overwriting a run eliminates a large
accumulation of runs when you are establishing a baseline run for comparing simulation
runs. When you overwrite a run, signal selection and color are retained.

10-13

http://www.mathworks.com/help/releases/R2013a/simulink/ug/view-and-save-performance-advisor-reports.html#btusp04
http://www.mathworks.com/help/releases/R2013a/simulink/ug/introduction_btss6bk-2.html
http://www.mathworks.com/help/releases/R2013a/simulink/ug/run-management-configuration.html

R2013a

Signal Management

Referenced models sample times

You can use one or more variable sample times in a referenced model. You can include
blocks with variable sample times, such as the Pulse Generator block, in a referenced
model in Normal or Accelerator mode. The Sample Time Legend reflects this new
capability with the following:

• Text label Variable in the Description column.
• Display of hierarchical structure of the value in the reference model hierarchy in the

Value column.

For more information, see Designate Sample Times.

Opening a model that contains referenced models with variable sample times generates
errors in releases prior to R2013a.

Compatibility Considerations

If you want to use an S-function block that contains one variable sample time in an
R2013a referenced model, recompile the S-function code in the R2013a environment
first. Otherwise, compiling this model reference hierarchy in the R2013a environment
generates errors.

Triggered subsystem sample times

The Sample Time Legend now displays the source of triggered subsystem sample times.
The block area of a model now has annotations that show the triggered sample time and
the sample time index number. For more information, see Designate Sample Times

Simulation of variable-size scalar signals

Previously, a model that used a variable-size scalar signal (width equals 1) would cause
an error during a model update. You can now simulate a model with a variable-size
scalar signal.

10-14

http://www.mathworks.com/help/releases/R2013a/simulink/ug/how-to-specify-the-sample-time.html#br1wylf
http://www.mathworks.com/help/releases/R2013a/simulink/ug/how-to-specify-the-sample-time.html#br1wylf

 Block Enhancements

Block Enhancements

CORDIC approximation method for atan2 function of Trigonometric
Function block

The Trigonometric Function block now supports the CORDIC approximation method for
computing the output of the atan2 function. For more information, see Trigonometric
Function.

Product and Gain blocks support Basic Linear Algebra Subprogram
(BLAS) library

The Product and Gain blocks now support the Basic Linear Algebra Subprogram (BLAS)
library. The BLAS library is a library of external linear algebra routines optimized for
fast computation of large matrix operations. Whenever possible, the blocks use BLAS
library routines to increase simulation speed.

Performance Advisor check for Delay block circular buffer setting

To improve simulation, the Performance Advisor checks that each Delay block in the
model uses the appropriate buffer type. By default, the block uses an array buffer (the
Use circular buffer for state option is not selected). However, when the delay length
is large, a circular buffer can improve execution speed by keeping the number of copy
operations constant. For more information, see Check Delay block circular buffer setting.

10-15

http://www.mathworks.com/help/releases/R2013a/simulink/slref/trigonometricfunction.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/trigonometricfunction.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/simulink-checks_bth9tg2-2.html#btp_hqc

R2013a

MATLAB Function Blocks

Masking of MATLAB Function blocks to customize appearance,
parameters, and documentation

In R2013a, you can mask a MATLAB Function block directly. In previous releases,
you had to place the MATLAB Function Block in a subsystem, and then mask that
subsystem.

Compatibility Considerations

In R2013a, MATLAB scripts or functions that rely on the MaskType
property of MATLAB Function blocks need to be updated. For example,
get_param(handle_to_block, 'MaskType') or get_param(handle_to_block,
'MaskDescription') now returns an empty value. Using
find_system(block_diagram_root,'SFBlockType','MATLAB

Function') returns all MATLAB Function blocks. Using
get_param(handle_to_block,'SFBlockType') returns MATLAB Function. Do not
create masks with Mask Type Stateflow, because the behavior is unpredictable.

File I/O function support

The following file I/O functions are now supported for code generation:

• fclose
• fopen
• fprintf

To view implementation details, see Functions Supported for Code Generation —
Alphabetical List.

Support for nonpersistent handle objects

You can now generate code for local variables that contain references to handle objects
or System objects. In previous releases, generating code for these objects was limited to
objects assigned to persistent variables.

10-16

http://www.mathworks.com/help/releases/R2013a/matlab/ref/fclose.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/fopen.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/fprintf.html
http://www.mathworks.com/help/releases/R2013a/simulink/ug/functions-supported-for-code-generation--alphabetical-list.html
http://www.mathworks.com/help/releases/R2013a/simulink/ug/functions-supported-for-code-generation--alphabetical-list.html

 MATLAB Function Blocks

Include custom C header files from MATLAB code

The coder.cinclude function allows you to specify in your MATLAB code which
custom C header files to include in the generated C code. Each header file that you
specify using coder.cinclude is included in every C/C++ file generated from your
MATLAB code. You can specify whether the #include statement uses double quotes for
application header files or angle brackets for system header files in the generated code.

For example, the following code for function foo specifies to include the application
header file mystruct.h in the generated code using double quotes.

function y = foo(x1, x2)

%#codegen

coder.cinclude('mystruct.h');

...

For more information, see coder.cinclude.

Load from MAT-files

MATLAB Coder now supports a subset of the load function for loading run-time
values from a MAT-file while running a MEX function. It also provides a new function,
coder.load, for loading compile-time constants when generating MEX or standalone
code. This support facilitates code generation from MATLAB code that uses load to load
constants into a function. You no longer have to manually type in constants that were
stored in a MAT-file.

To view implementation details for the load function, see Functions Supported for Code
Generation — Alphabetical List.

For more information, see coder.load.

coder.opaque function enhancements

When you use coder.opaque to declare a variable in the generated C code, you can now
also specify the header file that defines the type of the variable. Specifying the location
of the header file helps to avoid compilation errors because the code generation software
can find the type definition more easily.

10-17

http://www.mathworks.com/help/releases/R2013a/simulink/slref/coder.cinclude.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/load.html
http://www.mathworks.com/help/releases/R2013a/simulink/ug/functions-supported-for-code-generation--alphabetical-list.html
http://www.mathworks.com/help/releases/R2013a/simulink/ug/functions-supported-for-code-generation--alphabetical-list.html
http://www.mathworks.com/help/releases/R2013a/simulink/slref/coder.load.html

R2013a

You can now compare coder.opaque variables of the same type. This capability helps
you verify, for example, whether an fopen command succeeded.

null = coder.opaque('FILE*','NULL','HeaderFile','stdio.h');

ftmp = null;

ftmp = coder.ceval('fopen',fname,permission);

if ftmp == null

 % Error - file open failed

end

For more information, see coder.opaque.

Complex trigonometric functions

You can now use complex acosD, acotD, acscD, asecD, asinD, atanD, cosD, cscD, cotD,
secD, sinD, and tanD functions with the MATLAB Function block.

Support for integers in number theory functions

Code generation supports integer inputs for the following number theory functions:

• cumprod
• cumsum
• factor
• factorial
• gcd
• isprime
• lcm
• median
• mode
• nchoosek
• nextpow2
• primes
• prod

To view implementation details, see Functions Supported for Code Generation —
Alphabetical List.

10-18

http://www.mathworks.com/help/releases/R2013a/simulink/slref/coder.opaque.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/acosd.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/acotd.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/acscd.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/asecd.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/asind.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/atand.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/cosd.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/cscd.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/cotd.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/secd.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/sind.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/tand.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/cumprod.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/cumsum.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/factor.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/factorial.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/gcd.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/isprime.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/lcm.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/median.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/mode.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/nchoosek.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/nextpow2.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/primes.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/prod.html
http://www.mathworks.com/help/releases/R2013a/simulink/ug/functions-supported-for-code-generation--alphabetical-list.html
http://www.mathworks.com/help/releases/R2013a/simulink/ug/functions-supported-for-code-generation--alphabetical-list.html

 MATLAB Function Blocks

Enhanced support for class property initial values

If you initialize a class property, you can now assign a different type to the property
when you use the class. For example, class foo has a property prop1 of type double.

classdef foo %#codegen

 properties

 prop1= 0;

 end

 methods

 ...

 end

end

Function bar assigns a different type to prop1.

fumction bar %#codegen

 f=foo;

 f.prop1=single(0);

 ...

In R2013a, code generation ignores the initial property definition and uses the
reassigned type. In previous releases, code generation did not support this reassignment
and failed.

Compatibility Considerations

In previous releases, if the reassigned property had the same type as the initial value
but a different size, the property became variable-size in the generated code. In R2013a,
code generation uses the size of the reassigned property, and the size is fixed. If you
have existing MATLAB code that relies on the property being variable-size, you cannot
generate code for this code in R2013a. To fix this issue, do not initialize the property in
the property definition block.

For example, you can no longer generate code for the following function bar.

Class foo has a property prop1 which is a scalar double.

classdef foo %#codegen

 properties

 prop1= 0;

 end

 methods

 ...

 end

10-19

R2013a

end

Function bar changes the size of prop1.

fumction bar %#codegen

 f=foo;

 f.prop1=[1 2 3];

 % Use f

 disp(f.prop1);

 f.prop1=[1 2 3 4 5 6];

Default use of Basic Linear Algebra Subprograms (BLAS) Libraries

Code generated for MATLAB Function blocks now uses BLAS libraries whenever they
are available. There is no longer an option to turn off the use of these libraries.

Compatibility Considerations

If existing configuration settings disable BLAS, code generation now ignores these
settings.

New toolbox functions supported for code generation

To view implementation details, see Functions Supported for Code Generation —
Alphabetical List.

Bitwise Operation Functions

• flintmax

Computer Vision System Toolbox Classes and Functions

• binaryFeatures
• insertMarker
• insertShape

Data File and Management Functions

• computer
• fclose
• fopen

10-20

http://www.mathworks.com/help/releases/R2013a/simulink/ug/functions-supported-for-code-generation--alphabetical-list.html
http://www.mathworks.com/help/releases/R2013a/simulink/ug/functions-supported-for-code-generation--alphabetical-list.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/flintmax.html
http://www.mathworks.com/help/releases/R2013a/vision/ref/binaryfeaturesclass.html
http://www.mathworks.com/help/releases/R2013a/vision/ref/insertmarker.html
http://www.mathworks.com/help/releases/R2013a/vision/ref/insertshape.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/computer.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/fclose.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/fopen.html

 MATLAB Function Blocks

• fprintf
• load

Image Processing Toolbox Functions

• conndef
• imcomplement
• imfill
• imhmax
• imhmin
• imreconstruct
• imregionalmax
• imregionalmin
• iptcheckconn
• padarray

Interpolation and Computational Geometry

• interp2

MATLAB Desktop Environment

• ismac
• ispc
• isunix

String Functions

• strfind
• strrep

Function being removed

The emlmex function has been removed.

Compatibility Considerations

The emlmex function generates an error in R2013a.

10-21

http://www.mathworks.com/help/releases/R2013a/matlab/ref/fprintf.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/load.html
http://www.mathworks.com/help/releases/R2013a/images/ref/conndef.html
http://www.mathworks.com/help/releases/R2013a/images/ref/imcomplement.html
http://www.mathworks.com/help/releases/R2013a/images/ref/imfill.html
http://www.mathworks.com/help/releases/R2013a/images/ref/imhmax.html
http://www.mathworks.com/help/releases/R2013a/images/ref/imhmin.html
http://www.mathworks.com/help/releases/R2013a/images/ref/imreconstruct.html
http://www.mathworks.com/help/releases/R2013a/images/ref/imregionalmax.html
http://www.mathworks.com/help/releases/R2013a/images/ref/imregionalmin.html
http://www.mathworks.com/help/releases/R2013a/images/ref/iptcheckconn.html
http://www.mathworks.com/help/releases/R2013a/images/ref/padarray.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/interp2.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/ismac.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/ispc.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/isunix.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/strfind.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/strrep.html

R2013a

Modeling Guidelines

Modeling Guidelines for High-Integrity Systems

The following are new modeling guidelines to develop models and generate code for high-
integrity systems:

• himl_0001: Usage of standardized function headers
• himl_0002: Strong data typing (MATLAB Function block boundary)
• himl_0003: Limitation of MATLAB Function complexity

MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow

The MathWorks Automotive Advisory Board (MAAB) working group created Version 3.0
of the MAAB Guidelines Using MATLAB, Simulink, and Stateflow. See MAAB Control
Algorithm Modeling for the MathWorks presentation of the guidelines.

10-22

http://www.mathworks.com/help/releases/R2013a/simulink/mdl_gd/modeling-style_btoluv4-2.html#btolvhf-1
http://www.mathworks.com/help/releases/R2013a/simulink/mdl_gd/modeling-style_btoluv4-2.html#btolw49-1
http://www.mathworks.com/help/releases/R2013a/simulink/mdl_gd/modeling-style_btoluv4-2.html#btolw8y-1
http://www.mathworks.com/help/releases/R2013a/simulink/maab-control-algorithm-modeling.html
http://www.mathworks.com/help/releases/R2013a/simulink/maab-control-algorithm-modeling.html

 Model Advisor

Model Advisor

Model Advisor checks reorganized in a future release

In a future release, the Model Advisor checks will be reorganized.

Compatibility Considerations

MathWorks will review the products and licenses required to run the Model Advisor
checks.

Model Advisor navigation between Upgrade Advisor, Performance
Advisor, and Code Generation Advisor

In the Model Advisor window, you can select:

• Code Generation Advisor to help configure your model to meet code generation
objectives.

• Upgrade Advisor to help upgrade models.
• Performance Advisor to help improve the simulation performance of your model.

Report

Single file HTML

Images in the Model Advisor html report are now embedded within the file, making
it easier to export and maintain the report. Previously, the icon images were stored in
separate files.

Format

The Model Advisor report format now uses indenting and italics to make it easier to
assess the results of an analysis.

Preferences dialog box

From the Model Editor, select Analysis > Model Advisor > Preferences to open the
Model Advisor Preferences dialog box. Alternately, in the Model Advisor window, select
Settings > Preferences.

10-23

R2013a

• From Default Mode, select Model Advisor or Model Advisor Dashboard to
specify the interface that you want to use.

• Select Show Accordian for entry points to other Advisors from the Model Advisor
window.

To display additional information about the checks in the Model Advisor window, select:

• Show By Product Folder for checks available for each product.
• Show By Task Folder for checks related to specific tasks.
• Show Source tab for check Title, TitleID, and location of the MATLAB source code

for the check.
• Show Exclusion tab for checks that are excluded from the Model Advisor analysis.

By Product folder not displayed

By default, in the Model Advisor window, the By Product folder is not displayed. To
display checks in the By Product folder, in the Model Advisor window, select Settings
> Preferences. In the Model Advisor Preferences dialog box, select Show By Product
Folder.

10-24

R2012b
Version: 8.0

New Features

Bug Fixes

Compatibility Considerations

R2012b

New Simulink Editor

Tabbed windows and automatic window reuse to minimize window
clutter

By default, the Simulink Editor uses:

• One window to display a model and its subsystems
• The same tab for each system that you open in a model

For example, if you open the f14 model and then open the Controller subsystem, the
Simulink Editor reuses the window and tab.

Window reuse and tabs:

• Conserve desktop space

11-2

 New Simulink Editor

• Keep the display of systems in a model together
• Provide easy navigation between systems in a model

To override the default window reuse behavior for a specific subsystem, right-click the
subsystem and select either Open in New Tab or Open in New Window.

For more information, see Window Management.

Compatibility Considerations

The window display behavior for models created before R2012b remains the same in
R2012b as it was in earlier releases. For example, if opening a model in an earlier release
(such as R2011a) opened three Simulink Editor windows, then when you open that same
model in R2012b, three Simulink Editor windows also open.

However, if you open an earlier model that has a callback that opens a subsystem, by
default the subsystem opens in the same Simulink Editor window that is used for the
model. If you want the callback to open a separate window for the subsystem, include an
open_system call that uses the new window argument.

Smart signal routing that determines the simplest signal line path without
overlapping blocks

When you draw lines to connect blocks, the Simulink Editor automatically routes the
line to avoid other blocks and to minimize diagram clutter. You can manually modify the
routing.

For more information, see Connect Blocks.

Explorer bar to help with navigating through a model

The Explorer bar in the Simulink Editor provides a breadcrumb that shows the nested
path for the currently open system.

Select a system in the breadcrumb to open that system in the model window. If you click
in the Explorer bar whitespace, you can edit the hierarchy. Also, the down arrow at the
right side of the Explorer bar provides a model display history.

11-3

http://www.mathworks.com/help/releases/R2012b/simulink/ug/using-the-model-editor.html#btiiwpd
http://www.mathworks.com/help/releases/R2012b/simulink/slref/open_system.html
http://www.mathworks.com/help/releases/R2012b/simulink/ug/connecting-blocks.html

R2012b

Simulation stepper to simulate and rewind a model one step at a time

With the new simulation stepper, you can:

• Step forward and back in time during a simulation
• Set time breakpoints
• Set conditional breakpoints on a scalar signal

For more information, see Simulation Stepping.

Ability to comment out blocks

Comment out blocks in your model if you want to exclude them during simulation. To
exclude a block, right-click the selected block and select Comment out.

Commenting out blocks can be useful for several tasks, including to:

• Incrementally test parts of a model under development
• Debug a model without having to delete and restore blocks between simulation runs
• Test and verify the effects of certain model blocks on simulation results
• Improve simulation performance

Subsystem badges to identify and look under masked subsystems

Identify masked subsystems by the badge that appears in the lower-left corner of the
mask (). Click this badge to open the mask.

Note: The badge does not appear for masks of library links if the library is locked or its
LockLinksToLibrary property is set to true.

Reorganized menu to fit common Model-Based Design workflow

The new Simulink Editor provides a top-level menu structure that reflects the steps
of the model-based design process that you perform in the Simulink environment. The
process is iterative and involves using different menus in different orders. The following
table indicates the main menus associated with each Model-Based Design step.

11-4

http://www.mathworks.com/help/releases/R2012b/simulink/ug/introduction_bs4r34e-1.html

 New Simulink Editor

Model-Based Design Step Corresponding Menus

Build the Simulink block diagram. • File
• Edit
• View
• Diagram

Run the simulation. Simulation
Validate the simulation results. • View

• Display
• Analysis

The Help and Tools menus provide information and tools that apply throughout the
steps of the process.

The Code menu provides options relating to code generation.

For more information, see Simulink Editor.

Compatibility Considerations

The names and menu paths for some menu items have changed from what they were
in the R2012a Simulink Editor. For a summary of the changes to menus, keyboard and
mouse shortcuts, badges, and Simulink preferences, see “Simulink Editor Changes” on
page 11-7.

Palette for commonly used actions

You can use a palette of icons (to the left of the canvas area) to perform common actions,
such as adding annotations or marquee zooming.

Panning and zooming

Pan through a model by pressing the mouse scroll wheel and dragging the mouse or by
pressing the space bar while dragging the mouse. Zoom using the mouse scroll wheel. To
change the default action of the mouse scroll wheel, use Simulink preferences.

For more information, see Zoom and Pan Block Diagrams.

11-5

http://www.mathworks.com/help/releases/R2012b/simulink/ug/using-the-model-editor.html
http://www.mathworks.com/help/releases/R2012b/simulink/ug/zooming-block-diagrams.html

R2012b

Display of overlapping blocks

Control which block appears on top, when there are overlapping blocks. From a block
context menu, select Arrangeand then choose either Bring To Front or Send to Back.
(In the R2012a Simulink Editor, Simulink automatically set the display order, based on
alphabetical order of the block name.)

Unification of Simulink and Stateflow Editors

The Simulink and Stateflow Editors now share most menu items. Additional aspects of
the editor unification include:

• Unified canvas: Edit models and Stateflow charts in the same window.
• Unified Model Browser tree: Model Browser tree shows complete hierarchy,

including Stateflow.

Also, you can now access the same editor functionality on Windows, UNIX®, and Mac
platforms.

Simulink Editor preferences

The Simulink Preferences dialog box now includes preferences to control the look and
behavior of the Simulink Editor. For example, you specify how the scroll wheel behaves,
the look of the diagram (the diagram theme), and the toolbar configuration at a specific
level (for example, whether or not to display the Simulation toolbar).

To access the Simulink Editor preferences from the Simulink Editor, select File >
Simulink Preferences > Editor Defaults. To access those preferences from the
Library Browser, select File > Preferences > Editor Defaults.

Compatibility Considerations

The following R2012a preferences do not appear in R2012b:

• Window reuse
• Display Defaults for New Models > Browser visible

In the new Simulink Editor, you can control these editor behaviors directly from within
the editor. For details, see “Simulink Preferences Changes” on page 11-19.

11-6

 New Simulink Editor

Toolbar and status bar control

You can control the hiding or displaying of toolbars and the status bar by using Simulink
Editor Default preferences. These preferences persist across editor sessions.

Compatibility Considerations

The model parameters StatusBar and ToolBar have no effect in the Simulink Editor.
These parameters will be removed in a future release.

Visual editing based on model objects

The Simulink Editor provides tools such as smart guides and automated line routing
that work based on the relative locations of model objects. This approach replaces pixel-
oriented visual editing.

Compatibility Considerations

The model parameters GridSpacing and ShowGrid have no effect in the Simulink
Editor. These parameters will be removed in a future release.

Improved callback error handling

When an interactive operation triggers a callback that causes an error in MATLAB,
Simulink:

• Undoes the operation
• Issues an error message

Compatibility Considerations

Before R2012b, for an interactive operation that triggered a callback error in MATLAB,
Simulink reported a warning (not an error), even though Simulink stopped the callback
operation at the point of failure.

Simulink Editor Changes

• “Mapping from R2012a Simulink Editor to the New Simulink Editor” on page
11-8

11-7

R2012b

• “File Menu” on page 11-8
• “Edit Menu” on page 11-9
• “View Menu” on page 11-9
• “Simulation Menu” on page 11-10
• “Format Menu” on page 11-11
• “Tools Menu” on page 11-12
• “Help Menu” on page 11-13
• “Simulink Editor Context Menu Changes” on page 11-14
• “Simulink Editor Mouse and Keyboard Shortcut Changes” on page 11-16
• “Simulink Editor Badges Changes” on page 11-19
• “Simulink Preferences Changes” on page 11-19
• “Simulink and Stateflow Editor Customization Changes” on page 11-20

Mapping from R2012a Simulink Editor to the New Simulink Editor

The following tables list the new Simulink Editor menu bar items that are different from
the R2012a Simulink Editor.

The tables do not include menu bar items that:

• Have not changed
• Appear only in the new Simulink Editor

The arrows (>) indicate nested menu paths.

File Menu

R2012a Simulink Editor Menu Bar Item New Simulink Editor Equivalent

Preferences File > Simulink Preferences and File >
Stateflow Preferences.

Export to Web File > Export Model to Web.
Print Details File > Print > Print Details.
Print Setup File > Print > Printer Setup.
Enable Tiled Printing File > Print > Enable Tiled Printing.

11-8

 New Simulink Editor

Edit Menu

R2012a Simulink Editor Menu Bar Item New Simulink Editor Equivalent

Copy Model to Clipboard Edit > Copy Current View to Clipboard
(copies the open Model Editor window
contents to the clipboard).

Create Subsystem Diagram > Subsystem & Model
Reference > Create Subsystem from
Selection.

Create Mask If the block is not already masked, the
dynamic menu path is Diagram > Mask >
Create Mask.

If the block is already masked, the dynamic
menu path is Diagram > Mask > Edit
Mask.

Look Under Mask Diagram > Mask > Look Under Mask.
Link Options Diagram > Library Link.
Links and Model Blocks > Refresh Diagram > Subsystem & Model

Reference > Refresh Selected Model
Block or, for library links, Diagram >
Refresh Blocks.

Links and Model Blocks > Model Block
Normal Mode Visibility

Diagram > Subsystem & Model
Reference > Model Block Normal Mode
Visibility.

Update Diagram Simulation > Update Diagram.

View Menu

R2012a Simulink Editor Menu Bar Item New Simulink Editor Equivalent

Back

Forward

Go To Parent

Access each option using View > Navigate
.

Go To Parent changed to Up to Parent.

Model Browser Options View > Model Browser.
Block Data Tip Options Display > Blocks > Tool Tip Options.

11-9

R2012b

R2012a Simulink Editor Menu Bar Item New Simulink Editor Equivalent

The submenu item Block Description
changed to Description.

Requirements View > Requirements at This Level.
Signal Hierarchy Diagram > Signals & Ports > Signal

Hierarchy.
Sample Time Legend Display > Sample Time > Sample Time

Legend.
Zoom In

Zoom Out

Fit System To View

Normal (100%)

Access each option using View > Zoom.

Fit System to View changed to Fit to
View.

Normal (100%) changed to Normal View
(100%).

Show Page Boundaries File > Print > Show Page Boundaries.
Port Values submenus, such as Show
When Hovering

Display > Data Display in Simulation.

Highlight/Remove Highlighting Display > Highlight Signal to Source
or Display > Highlight Signal to
Destination or Display > Remove
Highlighting.

Simulation Menu

R2012a Simulink Editor Menu Bar Item New Simulink Editor Equivalent

Configuration Parameters Simulation > Model Configuration
Parameters.

Normal

Accelerator

Rapid Accelerator

Software-in-the-Loop (SIL)

Processor-in-the-Loop

Access each option using Simulation >
Mode.

11-10

 New Simulink Editor

R2012a Simulink Editor Menu Bar Item New Simulink Editor Equivalent

External
Start Simulation > Run.

Format Menu

R2012a Simulink Editor Menu Bar Item New Simulink Editor Equivalent

Font Diagram > Format > Font Style.

On Mac platforms, supported fonts must be
in both the X11 and Mac font manager.

Text Alignment

Enable TeX Commands

Access each option using Diagram >
Format.

Show Name Diagram > Format > Show Block
Name.

Show Drop Shadow Diagram > Format > Block Shadow.
Show Port Labels Diagram > Format > Port Labels.
Foreground Color

Background Color

Access each option using Diagram >
Format.

Screen Color Diagram > Format > Canvas Color.
Show Smart Guides View > Smart Guides.
Align Blocks

Distribute Blocks

Resize Blocks

Access using block alignment, distribution,
and resizing options using Diagram >
Arrange.

Flip Name Diagram > Rotate & Flip > Flip Block
Name.

Flip Block Diagram > Rotate & Flip > Flip Block.
Rotate Block Access block rotation options using

Diagram > Rotate & Flip.
Port/Signal Displays Access most port and signal display options

using Display > Signals & Ports.

11-11

R2012b

R2012a Simulink Editor Menu Bar Item New Simulink Editor Equivalent

Signal Resolution Indicators changed to
Signal to Object Resolution Indicator.

Block Display > Sorted Order Display > Blocks > Sorted Execution
Order.

Block Display > Model Block Version Display > Blocks > Block Version for
Referenced Models.

Block Display > Model Block I/O
Mismatch

Display > Blocks > Block I/O Mismatch
for Referenced Model.

Block Display > Execution Context
Indicator

Display > Blocks > Sorted Execution
Order.

Library Link Display Access library link display options using
Display > Library Links.

Sample Time Display Access sample time options using Display
> Sample Time.

None changed to Off.

Tools Menu

The tools that appear in the Tools menu and other menus reflect the products for which
you have a license.

R2012a Simulink Editor Menu Bar Item New Simulink Editor Equivalent

Compare Simulink XML Files

Control Design

Coverage Settings

Design Verifier

Fixed-Point Tool

Model Advisor

Model Dependencies

Parameter Estimation

Access these tools using Analysis.

The menu text for these items has changed:

• Coverage Settings changed to
Coverage.

• Fixed-Point changed to Fixed Point
Tool (i.e., there is no hyphen now)

• Model Dependencies > View/Edit
Manifest Contents changed to Model
Dependencies > Edit Manifest
Contents.

11-12

 New Simulink Editor

R2012a Simulink Editor Menu Bar Item New Simulink Editor Equivalent

Profiler

Requirements

• Profiler changed to Show Profiler
Report.

Simulink Debugger Simulation > Debug > Debug Model.
Bus Editor

Lookup Table Editor

Access these tools using Edit.

Inspect Logged Signals Simulation > Output > Simulation
Data Inspector.

Signal & Scope Manager Diagram > Signals & Ports > Signal &
Scope Manager.

Code Generation

External Mode Control Panel

HDL Code Generation

Simulink Code Inspector

Verification Wizards

Access these options using Code.

Code Generation changed to C/C++
Code.

HDL Code Generation changed to HDL
Code.

Define Data Classes

Data Object Wizard

Access these options using Code > Data
Objects.

Define Data Classes changed to Design
Data Classes.

Response Optimization Analysis > Response Optimization.

Help Menu

R2012a Simulink Editor Menu Bar Item New Simulink Editor Equivalent

Using Simulink Help > Simulink > Simulink Help.
Blocks

Blocksets

Help > Simulink > Blocks & Blocksets
Reference.

Block Support Table Help > Simulink > Block Data Types &
Code Generation Support.

11-13

R2012b

R2012a Simulink Editor Menu Bar Item New Simulink Editor Equivalent

Shortcuts Help > Keyboard Shortcuts.
S-Functions Help > Simulink > S-Functions.
Demos Help > Simulink > Examples and Help

> Stateflow > Examples.
About Simulink Help > About > Simulink.

Simulink Editor Context Menu Changes

From the Canvas

R2012a Simulink Editor Context Menu New Simulink Editor Equivalent

Back

Forward

Go to Parent

Not available from context menu.

From the menu bar, select the appropriate
menu item from View > Navigate.

Configuration Parameters Model Configuration Parameters.
Format > Wide Nonscalar Lines

Format > Signal Dimensions

Format > Port Data Types

Access these options using Display >
Signals & Ports.

Link Options Not available from the canvas context
menu.

Access either from a block context menu
or from the menu bar, using Diagram >
Library Link.

Requirements Requirements at This Level.
Screen Color Canvas Color.
Signal & Scope Manager Not available from context menu.

From the menu bar, use Diagram >
Signals & Ports > Signal & Scope
Manager.

11-14

 New Simulink Editor

R2012a Simulink Editor Context Menu New Simulink Editor Equivalent

Fixed-Point Tool Fixed Point Tool.

From a Block

R2012a Simulink Editor Context Menu New Simulink Editor Equivalent

Block Properties Properties.
Foreground Color

Background Color

Access these options using Format.

Convert to Model Block (for Subsystem
block context menu)

Subsystem & Model Reference >
Convert Subsystem to > Referenced
Model.

Format > Flip Block

Format > Flip Name

Format > Rotate Block

Access these options using Rotate & Flip.

Format > Font Format > Font Style.
Format > Show Drop Shadow Format > Block Shadow.
Format > Show Name Format > Show Block Name.
Format > Show Port Labels Format > Port Labels.
HDL Code Generation HDL Code.
Link Options Not available from context menu.

From the menu bar, use Diagram >
Library Link.

Mask Subsystem If the block is not already masked, the
dynamic menu path is Mask > Create
Mask.

If the block is already masked, the dynamic
menu path is Mask > Edit Mask.

Look Under Mask Mask > Look Under Mask.
Port Signal Properties Signals & Ports.

11-15

R2012b

R2012a Simulink Editor Context Menu New Simulink Editor Equivalent

Signal & Scope Manager Not available from context menu.

From the menu bar, use Diagram >
Signals & Ports > Signal & Scope
Manager.

Create Subsystem Subsystem & Model Reference >
Create Subsystem from Selection.

Code Generation > Generate Protected
Model (from a Model block)

From a Model block: C/C++ Code >
Generate Protected Model

Note that you can also access this option
from the main menu: Code > C/C++ Code
> Generate Protected Model.

Refresh (from a Model block) Subsystem & Model Reference >
Refresh Selected Model Block

From a Signal

R2012a Simulink Editor Context Menu New Simulink Editor Equivalent

Connect to Existing Viewer Connect to Viewer.
Disconnect & Delete Viewer Use a combination of Disconnect Viewer

and Delete Viewer.
Fixed-Point Tool Not available from context menu.

From the menu bar, use Analysis > Fixed
Point.

Highlight to Source

Highlight to Destination

Highlight Signal to Source.

Highlight Signal to Destination.
Linearization Points Linear Analysis Points.

Simulink Editor Mouse and Keyboard Shortcut Changes

Mouse Scroll Wheel

By default, in the new Simulink Editor, rolling the mouse scroll wheel up zooms in on a
model, and rolling the wheel down zooms out.

11-16

 New Simulink Editor

To scroll left and right using the mouse scroll wheel, press Shift while rolling the wheel.
To scroll up and down, press Ctrl while rolling the wheel.

You can change the default scroll wheel behavior. In the Simulink Preferences dialog box,
clear Editor Defaults > Scroll wheel controls zooming.
Model Viewing Shortcuts

Task R2012a Simulink Editor Shortcut New Simulink Editor Equivalent

Zoom in r Use the mouse scroll wheel or
Ctrl++ (the plus sign)

Zoom out v Use the mouse scroll wheel or
Ctrl+- (the minus sign).

Zoom to normal view 1 Alt+1
Pan left d or Ctrl+Left Arrow If scroll bars are visible, then

with nothing selected, use
Shift+Left Arrow or for finer
panning, just the Left Arrow.

Pan right g or Ctrl+Right Arrow If scroll bars are visible, then
with nothing selected, use Shift
+Right Arrow or for finer
panning, just the Right Arrow.

Pan up e or Ctrl+Up Arrow If scroll bars are visible, then
with nothing selected, use
Shift+Up Arrow or for finer
panning, just the UpArrow.

Pan down c or Ctrl+Down Arrow If scroll bars are visible, then
with nothing selected, use Shift
+Down Arrow or for finer
panning, just the Down Arrow.

Fit selection to screen f You can also use marquee zoom
to fit a selection to the screen.

Block Editing Shortcuts

Task R2012a Simulink Editor Shortcut New Simulink Editor Equivalent

Move a block from
one model to another
model

Shift, press the left mouse
button, and drag block to
different model. The block

In the new Simulink Editor,
Shift, press the left mouse
button, and drag block to

11-17

R2012b

Task R2012a Simulink Editor Shortcut New Simulink Editor Equivalent

is disconnected moved from
the source model to the other
model.

different model copies the block,
but does not remove it from the
source model.

Line Editing Shortcuts

Task R2012a Simulink Editor Shortcut New Simulink Editor Equivalent

Create line segments Move the cursor to the end of
line and drag the line.

New Simulink Editor performs
autorouting. You can manually
control the line segment by
clicking the arrow guides.

The arrow guides appear
when you edit a previously
disconnected signal from its
endpoint. During new line
creation, let go of the mouse
button and then move it off the
newly created endpoint.

Create diagonal line
segments

Click anywhere on a line,
Shift, and move the cursor.

For an existing line, click a bend
(corner) or solder (joint) point,
Shift, and move the cursor. For
new lines, use Shift and the
arrow guides.

Signal Label Editing Shortcuts

Task R2012a Simulink Editor Shortcut New Simulink Editor Equivalent

Delete signal label Shift and click label. Then
press Delete.

Right-click the label and from
the context menu, select Delete
Label.

Annotation Editing Shortcuts

Task R2012a Simulink Editor Shortcut New Simulink Editor Equivalent

Delete annotation Shift and select annotation.
Then press Delete.

Right-click the annotation and
from the context menu, select
Delete.

11-18

 New Simulink Editor

Simulink Editor Badges Changes

Badges are the icons that appear in the Simulink Editor to provide information about
how you have configured a model.

Badge R2012a Simulink Editor
Badge

New Simulink Editor Badge

Signal viewer

Library link active

Library link inactive

Library link locked

Library link parameterized

Model protected

Simulink Preferences Changes

Two R2012a Simulink preferences no longer appear in R2012b. In the new Simulink
Editor, you can control these editor behaviors directly from within the editor.

R2012a Simulink Preference New Simulink Editor Equivalent

Window reuse The Simulink Editor opens subsystems
in the same window that it uses for the
model that contains the subsystem. There
is no global setting to change that behavior.
However, you can control the window
and tab behavior when opening a specific
subsystem. For details, see Navigate Model
Hierarchy.

Browser visible To display or hide the Model Browser,
select or clear the View > Model
Browser > Show Model Browser
option.

Also, the MATLAB Preferences dialog box Figure Copy Template > Copy Options
preferences no longer apply to copying a model from the clipboard to a third-party
application.

11-19

http://www.mathworks.com/help/releases/R2012b/simulink/ug/creating-subsystems.html#f4-47954
http://www.mathworks.com/help/releases/R2012b/simulink/ug/creating-subsystems.html#f4-47954

R2012b

Simulink and Stateflow Editor Customization Changes

Customizing the new Simulink and Stateflow editors is as it was in R2012a, with the
following exceptions:

• The addition of custom menu functions to the ends of top-level menus depends on the
active editor:

• Menus bound to Simulink:FileMenu only appear when the Simulink Editor is
active.

• Menus bound to Stateflow:FileMenu only appear when the Stateflow Editor is
active.

• To have a menu to appear in both of the editors, call addCustomMenuFcn twice,
once for each tag. Check that the code works in both editors.

• If a filter is applied to the Simulink tag, then a menu item that existed in Simulink
and Stateflow editors in R2012a is filtered, regardless of the active editor type.
However, if the filter is applied to the Stateflow tag, then the menu item is only
filtered in the Stateflow Editor.

• If a menu item tag has changed in R2012b, you do not need to change the tag to the
R2012b tag.

For more information about customizing menus, see Add Items to Model Editor Menus
and Disable and Hide Model Editor Menu Items.

11-20

http://www.mathworks.com/help/releases/R2012b/simulink/ug/adding-items-to-model-editor-menus.html
http://www.mathworks.com/help/releases/R2012b/simulink/ug/disabling-and-hiding-model-editor-menu-items.html

 Connection to Educational Hardware

Connection to Educational Hardware

Support for Arduino and PandaBoard hardware

• “Support for Arduino Mega 2560 and Arduino Uno hardware” on page 11-21
• “Support for PandaBoard hardware” on page 11-22

Support for Arduino Mega 2560 and Arduino Uno hardware

Run Simulink models on Arduino Mega 2560 and Arduino Uno hardware. For more
information, see the Arduino topic.

To use this capability, first run Target Installer and install support for Arduino
hardware. To run Target Installer, enter targetinstaller in the MATLAB Command
Window.

After installing support, you can use the Simulink “Target for Use with Arduino
Hardware” block library. To open this block library, enter arduinolib in the MATLAB
Command Window.

This block library contains the following blocks:

• Arduino Analog Input
• Arduino PWM
• Arduino Digital Input
• Arduino Digital Output
• Arduino Serial Receive
• Arduino Serial Transmit
• Arduino Standard Servo Read
• Arduino Standard Servo Write
• Arduino Continuous Servo Write

After you install support, Target Installer displays the following examples:

• Getting Started with Arduino Hardware
• Communicating with Arduino Hardware (Arduino Mega 2560 only)
• Servo Control

11-21

http://www.mathworks.com/help/releases/R2012b/simulink/arduino.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/arduinoanaloginput.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/arduinopwm.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/arduinodigitalinput.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/arduinodigitaloutput.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/arduinoserialreceive.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/arduinoserialtransmit.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/arduinostandardservoread.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/arduinostandardservowrite.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/arduinocontinuousservowrite.html

R2012b

• Drive with PID Control

Support for PandaBoard hardware

Run Simulink models on PandaBoard hardware. For more information, see the
PandaBoard topic.

To use this capability, first run Target Installer and install support for PandaBoard
hardware. To run Target Installer, enter targetinstaller in the MATLAB Command
Window.

After installing support, you can use the Simulink “Target for Use with PandaBoard
Hardware” block library. To open this block library, enter pandaboardlib in the
MATLAB Command Window.

This block library contains the following blocks:

• PandaBoard UDP Receive
• PandaBoard UDP Send
• PandaBoard ALSA Audio Capture
• PandaBoard ALSA Audio Playback
• PandaBoard V4L2 Video Capture
• PandaBoard SDL Video Display

Bluetooth download to LEGO MINDSTORMS NXT hardware

You can use a Bluetooth® connection instead of a USB cable to download a Simulink
model from your host computer to the LEGO MINDSTORMS NXT hardware. Previously,
a USB cable was the only connection available for downloading models to the NXT
hardware. For more information, see:

• Run Model on NXT Brick
• Set Up A Bluetooth Connection

11-22

http://www.mathworks.com/help/releases/R2012b/simulink/pandaboard.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/pandaboardudpreceive.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/pandaboardudpsend.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/pandaboardalsaaudiocapture.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/pandaboardalsaaudioplayback.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/pandaboardv4l2videocapture.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/pandaboardsdlvideodisplay.html
http://www.mathworks.com/help/releases/R2012b/simulink/ug/create-and-run-an-application-on-lego-mindstorms-nxt-hardware.html
http://www.mathworks.com/help/releases/R2012b/simulink/ug/bluetooth-communications.html

 Performance

Performance

Simulation Performance Advisor that analyzes your model and provides
advice on how to increase simulation performance

Use the Performance Advisor to check models for conditions and configuration settings
that can result in inefficient simulation of the system that the model represents. The
Performance Advisor produces a report that lists the suboptimal conditions or settings
that it finds, suggesting better model configuration settings where appropriate. It also
provides mechanisms for automatically fixing warnings and failures or allowing you to
fix them manually. For more information, see Consult the Performance Advisor.

11-23

http://www.mathworks.com/help/releases/R2012b/simulink/ug/consult-the-performance-advisor.html

R2012b

Project and File Management

Simulink default file format SLX that uses the OPC standard

In R2012b, Simulink has a new default file format for models, SLX, with the file
extension .slx. In R2012a, SLX was available as an option.

The SLX file format contains the same information as an MDL file and is a compressed
package that conforms to the Open Packaging Conventions (OPC) interoperability
standard. SLX stores model information using Unicode UTF-8 in XML and other
international formats.

Saving Simulink models in the SLX format:

• Typically reduces file size. The file size reduction between MDL and SLX varies
depending on the model.

• Solves some problems in previous releases with loading and saving MDL files
containing Korean and Chinese characters.

• Supports new features in future releases not supported with MDL format.

You can still choose to save model files as MDL, and the MDL format will remain
available for the foreseeable future.

For more information, see Saving Models in the SLX File Format.

Compatibility Considerations

If you upgrade an MDL file to SLX file format, the file contains the same information
as the MDL file, and you always have a backup file. All functionality and APIs that
currently exist for working with models, such as the get_param and set_param
commands, are also available when using the SLX file format.

The MDL file format will continue to be supported, but, after R2012b, new features
might be available only if you use the SLX file format.

The new file extension .slx might cause compatibility issues if your scripts contain
hard-coded references to file names with extension .mdl. To check for problems, verify
that your code works with both the MDL and SLX formats. If you find any places in your

11-24

http://www.mathworks.com/help/releases/R2012b/simulink/ug/saving-a-model.html#btbr7kx-1

 Project and File Management

scripts that need to be updated, use functions like which and what instead of strings
with .mdl.

Caution: If you use third-party source control tools, be sure to register the model file
extension .slx as a binary file format. If you do not, these third-party tools might
corrupt SLX files when you submit them.

Operations with Possible
Compatibility Considerations

What Happens Action

Hard-coded references to
file names with extension
.mdl.

Scripts cannot find or
process models saved with
new file extension .slx.

Make your code work with
both the .mdl and .slx
extension.
Use functions like which and
what instead of strings with
.mdl.

Third-party source control
tools that assume a text
format by default.

Binary format of SLX files
can cause third-party tools
to corrupt the files when
you submit them.

Register .slx as a binary
file format with third-party
source control tools.

The format of content within MDL and SLX files is subject to change. Use documented
APIs (such as get_param, find_system and Simulink.MDLInfo) to operate on model
data.

Simulink Upgrade Advisor to help migrate files to the current release

Use the Upgrade Advisor for help with using the current release to upgrade and improve
models.

The Upgrade Advisor identifies cases where you can benefit by changing your model to
use new features and settings in Simulink. The Advisor provides advice for transitioning
to new technologies and upgrading a model hierarchy.

The Upgrade Advisor also identifies cases when a model will not work because changes
and improvements in Simulink require changes to a model.

The Upgrade Advisor offers options to perform recommended actions automatically or
instructions for manual fixes.

11-25

R2012b

See Consult the Upgrade Advisor.

Built-in SVN adapter for Simulink Projects that provides connectivity to
SVN and support for server-based repositories

Simulink Projects now provide built-in Subversion source control integration, reducing
setup and providing faster performance and improved support for connecting to servers.
You can now connect to servers that require login.

Previously, you had to install an additional command-line SVN client to use Projects
with SVN. Now you can use SVN for project source control with no additional installation
steps.

See Subversion Integration with Projects.

Simulink Project Tool dependency graph that provides highlights by file
type, dependency type, and label

After you run dependency analysis on your project, you can use the Graph view to
examine dependencies for impact analysis. You can now highlight dependencies by
file type, dependency type, and file labels. For example, you might want to highlight
model files and see which have the label To Review. Previously, you could highlight only
upstream and downstream dependencies of the selected file. Now you can also highlight
circular dependencies.

You can now also perform file operations in the Graph view, such as Open, Add to
Project, Add Label, and Remove from Project. File operations can be useful when
using the graphical dependency view to identify required changes to your project, such as
identifying files that need removing or files that share a common label.

The Dependencies results list and Graph view are now separate tree node views for
efficient workflow, instead of tabs within the Dependency Analysis view. These views
also now display a time stamp to identify when the analysis was performed.

See Analyze Project Dependencies.

Redesigned graphical tool for efficient Simulink Projects workflow

The Simulink Project Tool is redesigned for more efficient workflow and access to tools.

11-26

http://www.mathworks.com/help/releases/R2012b/simulink/ug/consulting-the-model-advisor.html#btiimgy-1
http://www.mathworks.com/help/releases/R2012b/simulink/ug/use-source-control-with-projects.html#bs6zkuw-1
http://www.mathworks.com/help/releases/R2012b/simulink/ug/project-dependency-analysis.html

 Project and File Management

• Simulink Projects are integrated with the MATLAB Toolstrip when you dock the tool,
with new options to create and open recent projects from MATLAB.

• The toolstrip contains components that were previously available in menus and
toolbars.

• All project views have new tools for improved browsing, searching, and filtering.
• There are new tree nodes for accessing the batch processing, dependency results, and

dependency graph views.
• The new source control pane provides access to configuration management tasks and

more space in other views.
• New archive options include the capability to create a new project from a zip archive.
• New project integrity checks assist with MDL to SLX upgrades, check for slprj

folders added to projects, and provide Fix buttons for tasks that can be automated.

See Simulink Projects.

Batch operation support for files in a Simulink Project

The Simulink Project Tool has a new Batch Job view to help you create and run functions
on selected project files. Batch tools provide guidance for creating your own batch
functions. An example batch job function identifies and saves any model files that
contain unsaved changes.

See Run Batch Functions on Project Files.

Create and open recent Simulink Projects from MATLAB

The MATLAB Toolstrip has new options to create Simulink Projects and open recent
projects direct from the MATLAB Desktop.

Simulink Projects are integrated with the MATLAB Toolstrip when you dock the tool.

See:

• Create a New Simulink Project
• Open Recent Projects
• Create a New Project from an Archived Project
• Retrieve a Working Copy of a Project from Source Control

11-27

http://www.mathworks.com/help/releases/R2012b/simulink/simulink-projects.html
http://www.mathworks.com/help/releases/R2012b/simulink/ug/run-batch-functions-on-project-files.html
http://www.mathworks.com/help/releases/R2012b/simulink/ug/create-a-new-simulink-project.html
http://www.mathworks.com/help/releases/R2012b/simulink/ug/create-a-new-simulink-project.html#bs13jy7-1
http://www.mathworks.com/help/releases/R2012b/simulink/ug/create-a-new-simulink-project.html#btj8gb9-1
http://www.mathworks.com/help/releases/R2012b/simulink/ug/retrieve-and-check-out-files-under-source-control.html#bsto8rk-1

R2012b

.

11-28

 Block Enhancements

Block Enhancements

Menu item to convert configurable and normal subsystems to variant
subsystems

Previously, to convert configurable or normal subsystems to variant subsystems, you had
to create a new variant subsystem in your model and manually modify it to match the
subsystem you were converting.

That method was error-prone. Manually matching a variant subsystem and its ports
to the converted subsystem was also a time-consuming process. Moreover, configurable
subsystems will not be supported in a future release.

In this release, you can do this conversion by right-clicking a subsystem and selecting
Subsystems and Model Reference > Convert Subsystem To > Variant
Subsystem.

Simulink creates a new variant subsystem and an appropriate number of inports and
outports that match the converted subsystem.

Masking improvements, including the ability to reuse masks, delete
existing masks on blocks, and use the shortcut operator || in mask
callback code

Use classes Simulink.Mask and Simulink.MaskParameter to control masks
programmatically. With these classes, you can perform the following mask operations:

• Create, copy, and delete masks
• Add, edit, and delete mask parameters
• Get mask owner and set properties for masks and mask parameters

In addition, in this release, you can use the OR operator ||, which was previously
prohibited, in mask callback code.

Default output data type of Logic blocks changed to boolean

The following blocks now use a default value of boolean for Output data type. In
previous releases, the blocks used uint8 as the default output data type.

11-29

http://www.mathworks.com/help/releases/R2012b/simulink/slref/simulink.maskclass.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/simulink.maskparameterclass.html

R2012b

• Compare To Constant
• Compare To Zero
• Detect Change
• Detect Decrease
• Detect Fall Negative
• Detect Fall Nonpositive
• Detect Increase
• Detect Rise Nonnegative
• Detect Rise Positive

Signal Attributes tab of dialog box for Operator blocks renamed to Data
Type

For the Logical Operator and Relational Operator blocks, the name of the Signal
Attributes tab of the block dialog box has changed to Data Type.

Parameter name changes for Unit Delay block

For the Unit Delay block, the following parameters have been renamed:

Old Name New Name

X0 InitialCondition

StateIdentifier StateName

RTWStateStorageClass CodeGenStateStorageClass

RTWStateStorageTypeQualifier CodeGenStateStorageTypeQualifier

New variants of Delay block in Discrete library

The Discrete library now contains the following additional variants of the Delay block:

• Variable Integer Delay block
• Resettable Delay block

11-30

http://www.mathworks.com/help/releases/R2012b/simulink/slref/comparetoconstant.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/comparetozero.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/detectchange.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/detectdecrease.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/detectfallnegative.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/detectfallnonpositive.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/detectincrease.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/detectrisenonnegative.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/detectrisepositive.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/logicaloperator.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/relationaloperator.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/unitdelay.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/delay.html

 Block Enhancements

You can configure the Delay block to work in the same way as either of these variants.

With the source of the delay length set to Input port, the Delay block works as a
Variable Integer Delay block.

To configure the Delay block to have a resettable delay, set the source of the initial
condition to Input port and the external reset algorithm to Rising.

11-31

R2012b

Some Probe block parameters no longer support boolean data type

The following parameters of the Probe block no longer support the boolean data type:

• Data type for width
• Data type for sample time
• Data type for signal dimensions

If the width, sample time, or dimensions of the input signal has a value greater than
zero, the boolean data type implicitly represents the output as 1, which is not a useful
result. Setting any of the listed parameters to Same as input while the block's input
signal data type is boolean results in a simulation error.

Internationalization of block dialog box titles and buttons and block
tooltips

To enable translation in localized versions of the Simulink software, in this release, the
following items relating to Simulink blocks were internationalized:

• Titles of block dialog boxes

11-32

http://www.mathworks.com/help/releases/R2012b/simulink/slref/probe.html

 Block Enhancements

• Text for block tooltips

As a result of these changes, in the Japanese version of Simulink, and in future localized
versions of the product, these items will display in translated form.

Enabled and triggered subsystems

For triggered and enabled subsystems, the Simulink software now performs zero-crossing
detection and zero-crossing state updates of the trigger port outside the enable check.

In previous releases, for triggered and enabled subsystems, the Simulink software
performed zero-crossing detection and zero-crossing state updates of the trigger port
inside the enable check. This behavior sometimes caused simulation and code generation
data mismatches.

11-33

R2012b

Data Management

Variable Editor access from within Model Explorer

In the Model Explorer Contents pane, you can use the Variable Editor to edit variables
from the MATLAB workspace or model workspace. The Variable Editor is available for
editing large arrays and structures.

To open the Variable Editor for a variable that is an array or structure:

1 Click the Value cell for the variable.
2 Select the Variable Editor icon.

The Variable Editor opens:

11-34

 Data Management

You can resize and move the Variable Editor. The Contents pane reflects the edits that
you make in the Variable Editor.

For details, see Editing Workspace Variables.

Logged simulation data from Simulation Data Inspector accessible from
Simulink toolbar

The record button for the Simulation Data Inspector tool is now accessible on the
Simulink toolbar. Previously, the record button was a global setting for all models.
The record button now applies per model. Click the record button to select it and then
simulate the model to record and inspect logged signal data. You can open the Simulation
Data Inspector tool by clicking the down arrow and selecting Open Simulation Data
Inspector. For more information, see Record Simulation Data.

Compatibility Considerations

The record button no longer appears on the Simulation Data Inspector tool.

Specify verifySignalAndModelPaths action

You can specify the action that the verifySignalAndModelPaths method of the signal
logging class Simulink.SimulationData.ModelLoggingInfo takes when it detects
an invalid path.

Import and map data to root-level input ports

The Configuration Parameters dialog box Data Import/Export > Input parameter now
has an Edit Input button. Use this button to start the Root Inport Mapping tool. This
tool lets you import data from a MAT-file and automatically map that data to root-level
input ports. For more information, see Import and Map Data to Root-Level Inports.

Dataset signal logging format for increased flexibility and ease of use

The default format for saving signal logging data is now Dataset.

With the Dataset format, you can do the following tasks, which you cannot do with the
previous default format of ModelDataLogs:

11-35

http://www.mathworks.com/help/releases/R2012b/simulink/ug/the-model-explorer-working-with-workspace-variables.html#btkf7l5
http://www.mathworks.com/help/releases/R2012b/simulink/ug/record-simulation-data.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/simulink.simulationdata.modellogginginfo.html#bs5lc8b-1
http://www.mathworks.com/help/releases/R2012b/simulink/ug/import-and-map-data-to-root-level-inports.html

R2012b

• Work with logging data in MATLAB without a Simulink license
• Log multiple data values for a given time step, which can be important for Iterator

subsystem and Stateflow signal logging
• Easily analyze logged signal data for models with deep hierarchies, bus signals, and

signals with duplicate or invalid names
• Avoid the limitations of the ModelDataLogs format, which Bug Report 495436

describes.

To specify the signal logging format, use the Configuration Parameters > Data
Import/Export > Signal logging format parameter. For more information, see
Specify the Signal Logging Data Format.

Compatibility Considerations

Before R2012b, the default signal logging format was ModelDataLogs. In R2012b, the
default format is Dataset. The ModelDataLogs format will be removed in a future
release.

In R2012b, Simulink displays a warning if you run a model that meets both of the
following conditions:

• The Configuration Parameters > Data Import/Export > Signal logging
format parameter is set to ModelDataLogs.

• The model has signal logging enabled for at least one signal or uses signal viewer
scopes.

Use the Upgrade Advisor to upgrade a model to use Dataset format, using one of these
approaches:

• In the Simulink Editor, select Analysis > Model Advisor > Upgrade Advisor
• From the MATLAB command line, use the upgradeadvisor function.

For more information about how to update models to use Dataset, including how to
address issues that you might encounter after converting a model to use Dataset
format, see Migrate from ModelDataLogs to Dataset Format.

Data type field displays user-defined data types

Previously, the data type fields in dialog boxes for various data entities such as data
objects and blocks displayed only built-in data types. For mpt signal and parameter

11-36

http://www.mathworks.com/support/bugreports/search_results?search_executed=1&keyword=495436&release_filter=Exists+in&release=0&selected_products=
http://www.mathworks.com/help/releases/R2012b/simulink/ug/enabling-signal-logging-for-a-model.html#bsxb84m
http://www.mathworks.com/help/releases/R2012b/simulink/slref/upgradeadvisor.html
http://www.mathworks.com/help/releases/R2012b/simulink/ug/enabling-signal-logging-for-a-model.html#btmtb3u

 Data Management

objects, you could customize this list to include user-defined data types. For this
customization, you had to modify the Simulink customization file sl_customization.m
to add user-defined data types to the list.

In R2012b, the data type field displays both user-defined and built-in data types,
provided these user-defined data types exist in the base workspace. This enhancement
is not restricted to mpt data objects. All dialog boxes that contain the data type field will
display user-defined data types.

Any modifications you make to sl_customization.m in order to display user-defined
data types will still be supported.

Simulink.VariableUsage to get variable information

In R2012b, use Simulink.VariableUsage to determine which blocks use a variable defined
in the model, mask, or base workspace.

Previously, you used Simulink.WorkspaceVar to get this information.

Compatibility Considerations

Simulink.WorkspaceVar will not be supported in a future release. If you use
Simulink.WorkspaceVar in your code to programmatically get variable information,
replace it with Simulink.VariableUsage.

Customizable line specification in Simulation Data Inspector

In the Simulation Data Inspector tool, the line specification includes customizable
color selection and more marker specifiers for plotting data points. To view the line
specification, in the Signal Browser table, click the Line column of a signal. For more
information, see Specify the Line Configuration.

Simulation Data Inspector report includes harness model information

A Simulation Data Inspector report of a recorded simulation of a Simulink Verification
and Validation harness model now includes model information and a model diagram of
the system under test and the test harness model. For more information on generating a
report, see Create Simulation Data Inspector Report.

11-37

http://www.mathworks.com/help/releases/R2012b/simulink/slref/simulink.variableusageclass.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/simulink.workspacevarclass.html
http://www.mathworks.com/help/releases/R2012b/simulink/ug/customize-the-simulation-data-inspector-interface.html#bso7ths-1
http://www.mathworks.com/help/releases/R2012b/simulink/ug/create-simulation-data-inspector-report.html

R2012b

Component-Based Modeling

Model configuration for targets with multicore processors

This capability has the following changes:

• Models configured for concurrent execution can now contain blocks that require
implicit ODE solvers, such as physical modeling blocks. In previous releases, models
that contained such blocks returned an error message during simulation and code
generation.

• Code generation for models configured for concurrent execution, and which contain
a large number of continuous states, now have improved performance and decreased
memory usage.

New Simulink.GlobalDataTransfer class

To configure data transfers for models configured for concurrent execution, use the
Simulink.GlobalDataTransfer class. This class contains the properties:

• DefaultTransitionBetweenSyncTasks

• DefaultTransitionBetweenContTasks

• DefaultExtrapolationMethodBetweenContTasks

• AutoInsertRateTranBlk

To access the properties of this class, use the get_param function to get the handle for
this class, then use dot notation to access the properties, for example:

dt=get_param(gcs,'DataTransfer');

dt.DefaultTransitionBetweenContTasks

ans =

Ensure deterministic transfer (minimum delay)

Reduced memory usage in models with many library links

Simulink now saves memory by closing partially loaded libraries on subsequent
simulations. In previous releases, Simulink loaded linked blocks by partially loading

11-38

http://www.mathworks.com/help/releases/R2012b/simulink/slref/simulink.globaldatatransferclass.html

 Component-Based Modeling

their source libraries when you opened, updated, or simulated the model. These partially
loaded libraries were never closed again, resulting in unnecessary memory use. Now
Simulink closes partially loaded libraries once they are no longer needed, after loading
the linked blocks. Reducing memory use can increase performance in large models with
many library links.

Compatibility Considerations

If you have scripts that assume libraries are loaded and try to access the library,
these scripts will now produce errors. You must update scripts to load libraries using
load_system before running commands such as set_param on a library.

Configuration Reference dialog box to propagate and undo configuration
settings to all referenced models

To share a configuration reference among referenced models in a model hierarchy, the
Configuration Reference Propagation dialog box provides:

• A list of referenced models in the top model
• The ability to select only specific referenced models for propagation
• After propagation, a display of the status for the converted configuration for each

referenced model
• The ability to undo the configuration reference and restore the previous configuration

settings for a referenced model

For more information, see Manage Configuration Reference Across Referenced Models
and Share a Configuration Across Referenced Models.

Context-dependent function-call subsystem input handling improved

Executing a function-call subsystem that has context-dependent inputs can result in
nondeterministic simulation results. Detecting dependent input at simulation time helps
to avoid unexpected code generation results.

Before R2012b, if you wanted Simulink to flag such cases as errors, you needed to set the
HiliteFcnCallInpInsideContext model parameter each time you load the model.
You could not save the setting for that parameter in the model.

11-39

http://www.mathworks.com/help/releases/R2012b/simulink/slref/load_system.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/set_param.html
http://www.mathworks.com/help/releases/R2012b/simulink/ug/referencing-configuration-sets.html#btmcf8o
http://www.mathworks.com/help/releases/R2012b/simulink/ug/sharing-a-configuration-set-between-referenced-models.html

R2012b

In R2012b, to generate an error whenever Simulink has to compute any of a function-
call subsystem’s inputs directly or indirectly during execution of the function-call
subsystem, you can use the new FcnCallInpInsideContextMsg parameter argument
setting of EnableAllAsError. The parameter setting is stored with the model. Set the
FcnCallInpInsideContextMsg parameter with the Configurations Parameters >
Diagnostics > Connectivity > Context-dependent inputs parameter.

Compatibility Considerations

In R2012b, the HiliteFcnCallInpInsideContext parameter has been removed. The
new FcnCallInpInsideContextMsg parameter settings eliminate the need for the
HiliteFcnCallInpInsideContext parameter, which you could not store with the
model.

In R2012b, the FcnCallInpInsideContextMsg parameter setting of Enable
All argument has been replaced by two settings: EnableAllAsWarning and
EnableAllAsError. The EnableAllAsError setting is now the default. In R2012a
and R2011b, Enable All was the default, and in R2011a and earlier, Use local
settings was the default.

If you have existing code that set the HiliteFcnCallInpInsideContext parameter,
you need to change that code in R2012b for the following conditions.

Existing Code R2012b Equivalent Code

HiliteFcnCallInpInsideContext set
to on

FcnCallInpInsideContextMsg set to
Enable All

Set FcnCallInpInsideContextMsg
to EnableAllAsError and remove
HiliteFcnCallInpInsideContext.

HiliteFcnCallInpInsideContext set
to off

FcnCallInpInsideContextMsg set to
Enable All

Set FcnCallInpInsideContextMsg
to EnableAllAsWarning and remove
HiliteFcnCallInpInsideContext

FcnCallInpInsideContextMsg set to
Use local settings

FcnCallInpInsideContextMsg set to
UseLocalSettings

FcnCallInpInsideContextMsg set to
Disable All

Set FcnCallInpInsideContextMsg to
DisableAll.

11-40

http://www.mathworks.com/help/releases/R2012b/simulink/gui/diagnostics-pane-connectivity.html#bq8t65c

 Component-Based Modeling

Note: The FcnCallInpInsideContextMsg settings of Use local settings
and Disable all are maintained for backward compatibility, but may be
deprecated in a future release. If code from before R2012b used get_param with the
FcnCallInpInsideContextMsg parameter for the string comparison, then when you
run that code in R2012b, the returned results of UseLocalSettings and DisableAll
no longer match the Use local settings and Disable all strings in the earlier
code.

The Model Advisor Check usage of function-call connections checks based on
the settings of the Configurations Parameters > Diagnostics > Connectivity >
Invalid function-call connection and Configurations Parameters > Diagnostics
> Connectivity > Context-dependent inputs parameters. In R2012b, the
recommended action was to set Context-dependent inputs to Enable All. In R2012b,
the recommended action is to set it to Enable all as errors.

When you save a model that has FcnCallInpInsideContextMsg parameter set to
EnableAllAsWarning or EnableAllAsError to an earlier release, Simulink saves the
earlier-release model with the Enable all setting. The EnableAllAsError behavior of
generating an error message is not available in the earlier-release model.

Simulink.Variant object and the model InitFcn

Simulink.Variant objects used by a model must be created before simulation is
started. If you create or update a Simulink.Variant object in the model’s callback
InitFcn function, then at diagram update time, Simulink ignores that object creation or
update.

Compatibility Considerations

In earlier versions of Simulink, if you created or updated Simulink.Variant objects
with the InitFcn function, Simulink incorrectly processed the object creation or update,
which could lead to incorrect model behavior.

11-41

R2012b

Signal Management

Sample time propagation changes

The way that Simulink software uses the sample time of an enable signal during sample
time propagation has been improved for models that contain enabled subsystems with:

• No Inport blocks
• All blocks inside the enabled subsystem specifying an inherited sample time

Simulink now sets the sample times of the contents of enabled subsystems with these
conditions to the sample times of their Enable blocks. In previous releases, Simulink did
not propagate the sample time of the enable signal to the subsystem contents. Instead,
Simulink determined the sample time of the subsystem contents using backpropagation
from outside the subsystem.

Compatibility Considerations

This change helps you avoid unintentional multirate enabled subsystems. However,
if existing models have Merge blocks whose inputs are driven by enabled subsystem
outputs, Model Advisor checks might return errors. Follow the Model Advisor guidelines
to resolve the issue.

If you want your model to behave as before, manually set the sample times in your
enabled subsystems.

Signal Builder

Signal Builder has the following changes:

• You can now import signal data formatted in a custom format to the Signal Builder
block. In previous releases, you could import data only if it complied with the existing
format guidelines. For more information, see Importing Data with Custom Formats.

• The Signal Builder block has had minor graphical updates. For more information, see
Signal Groups.

• The signalbuilder function now enables you to get the active group label.

11-42

http://www.mathworks.com/help/releases/R2012b/simulink/slref/enable.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/merge.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/signalbuilder.html
http://www.mathworks.com/help/releases/R2012b/simulink/ug/working-with-signal-groups.html#btjdvpl
http://www.mathworks.com/help/releases/R2012b/simulink/ug/working-with-signal-groups.html
http://www.mathworks.com/help/releases/R2012b/simulink/slref/signalbuilder.html

 User Interface Enhancements

User Interface Enhancements

Model Advisor Dashboard

The Model Advisor dashboard provides a way for you to efficiently check that your model
complies with modeling guidelines. You can use the Model Advisor dashboard to run a
set of checks on your model without opening the Model Advisor window and reloading
checks, saving analysis time. To open the Model Advisor dashboard, from the Model
Editor, you can either:

• Select Analysis > Model Advisor > Model Advisor Dashboard.
•

Select Model Advisor Dashboard from the Model Editor toolbar drop-down
list.

When you use the Model Advisor dashboard, you can select and view checks by clicking
the Switch to Model Advisor toggle button (). For more information, see Overview of
the Model Advisor Dashboard.

Show partial or whole model hierarchy contents

By default, the Model Explorer displays objects for the system that you select in the
Model Hierarchy pane. It does not display data for child systems.

Now you can override that default, so that the Model Explorer displays objects for the
whole hierarchy of the currently selected system. To toggle between displaying only the
current system and displaying the whole system hierarchy of the current system. Use one
of these techniques:

• Select View > Show Current System and Below.

11-43

http://www.mathworks.com/help/releases/R2012b/simulink/ug/consulting-the-model-advisor.html#bti29xw-1
http://www.mathworks.com/help/releases/R2012b/simulink/ug/consulting-the-model-advisor.html#bti29xw-1

R2012b

• Click the Show Current System and Below button at the top of the Contents
pane.

To indicate that you have selected the Show Current System and Below option, the
Model Explorer:

• In the Model Hierarchy pane, highlights in pale blue the current system and its
child systems

• After the path in the Contents of field, includes (and below)
• Changes the Show Current System and Below button at the top of the Contents

pane and in the View menu
• In the status bar, indicates the scope of the displayed objects when you hover over the

Show Current System and Below button

Loading very large models for the current system and below can be slow. To stop the
loading process at any time, either click the Show Current System and Below button
or click another node in the tree hierarchy.

If you show the current system and below, you may want to change the view to better
reflect the displayed system contents.

The setting for the Show Current System and Below option is persistent across
Simulink sessions.

For details, see Displaying Partial or Whole Model Hierarchy Contents.

Compatibility Considerations

The Model Explorer search bar no longer provides the Search Current System and
Below option. Instead, the search honors the Show Current System and Below
setting that you set with the View menu or Show Current System and Below button.

11-44

http://www.mathworks.com/help/releases/R2012b/simulink/ug/the-model-explorer-model-hierarchy-pane.html#btkelxv

 User Interface Enhancements

Improved icons for model objects

Improved icons for model objects that the Model Explorer displays (for example, blocks,
signals, variables) better represent the objects and are more consistent with icons used in
other Simulink tools.

Simulink Debugger

The following capabilities are not available in the debugger. For more information on the
debugger, see Introduction to the Debugger:

• Animations
• Adding breakpoints while in the initialization phase
• Displaying I/O while in the initialization phase

Multiple modifiers for custom accelerators

You can now use multiple modifiers when defining custom accelerators. In previous
releases, you used only the Ctrl key as a modifier for customer accelerators. In R2012b,
you can use multiple modifiers for custom accelerators, for example Ctrl+Alt+T. See Add
Items to Model Editor Menus.

11-45

http://www.mathworks.com/help/releases/R2012b/simulink/ug/introduction-to-the-debugger.html
http://www.mathworks.com/help/releases/R2012b/simulink/ug/adding-items-to-model-editor-menus.html
http://www.mathworks.com/help/releases/R2012b/simulink/ug/adding-items-to-model-editor-menus.html

R2012b

Model Advisor Checks

Verify Syntax of Library Models

There are Model Advisor checks available to verify the syntax of library models.
When you use the Model Advisor to check a library model, the Model Advisor window
indicates (~) checks that do not check libraries. To determine if you can run the check
on library models, you can also refer to the check documentation, in the Capabilities and
Limitations section. You cannot use checks that require model compilation. If you have a
Simulink Verification and Validation license, you can use an API to create custom checks
that support library models.

11-46

 MATLAB Function Blocks

MATLAB Function Blocks

New toolbox functions supported for code generation

To view implementation details, see Functions Supported for Code Generation —
Alphabetical List.

Computer Vision System Toolbox

• integralImage

Image Processing Toolbox

• bwlookup
• bwmorph

Interpolation and Computational Geometry

• interp2

String Functions

• deblank
• hex2num
• isletter
• isspace
• isstrprop
• lower
• num2hex
• strcmpi
• strjust
• strncmp
• strncmpi
• strtok
• strtrim
• upper

11-47

http://www.mathworks.com/help/releases/R2012b/coder/ug/functions-supported-for-code-generation--alphabetical-list.html
http://www.mathworks.com/help/releases/R2012b/coder/ug/functions-supported-for-code-generation--alphabetical-list.html
http://www.mathworks.com/help/releases/R2012b/vision/ref/integralimage.html
http://www.mathworks.com/help/releases/R2012b/images/ref/bwlookup.html
http://www.mathworks.com/help/releases/R2012b/images/ref/bwmorph.html
http://www.mathworks.com/help/releases/R2012b/matlab/ref/interp2.html
http://www.mathworks.com/help/releases/R2012b/matlab/ref/deblank.html
http://www.mathworks.com/help/releases/R2012b/matlab/ref/hex2num.html
http://www.mathworks.com/help/releases/R2012b/matlab/ref/isletter.html
http://www.mathworks.com/help/releases/R2012b/matlab/ref/isspace.html
http://www.mathworks.com/help/releases/R2012b/matlab/ref/isstrprop.html
http://www.mathworks.com/help/releases/R2012b/matlab/ref/lower.html
http://www.mathworks.com/help/releases/R2012b/matlab/ref/num2hex.html
http://www.mathworks.com/help/releases/R2012b/matlab/ref/strcmpi.html
http://www.mathworks.com/help/releases/R2012b/matlab/ref/strjust.html
http://www.mathworks.com/help/releases/R2012b/matlab/ref/strncmp.html
http://www.mathworks.com/help/releases/R2012b/matlab/ref/strncmpi.html
http://www.mathworks.com/help/releases/R2012b/matlab/ref/strtok.html
http://www.mathworks.com/help/releases/R2012b/matlab/ref/strtrim.html
http://www.mathworks.com/help/releases/R2012b/matlab/ref/upper.html

R2012b

Trigonometric Functions

• atan2d

New System objects supported for code generation

The following System objects are now supported for code generation. To see the list of
System objects supported for code generation, see System Objects Supported for Code
Generation.

Communications System Toolbox

• comm.ACPR
• comm.BCHDecoder
• comm.CCDF
• comm.CPMCarrierPhaseSynchronizer
• comm.GoldSequence
• comm.LDPCDecoder
• comm.LDPCEncoder
• comm.LTEMIMOChannel
• comm.MemorylessNonlinearity
• comm.MIMOChannel
• comm.PhaseNoise
• comm.PSKCarrierPhaseSynchronizer
• comm.RSDecoder

DSP System Toolbox

• dsp.AllpoleFilter
• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.IIRFilter
• dsp.SignalSource

11-48

http://www.mathworks.com/help/releases/R2012b/matlab/ref/atan2d.html
http://www.mathworks.com/help/releases/R2012b/coder/ug/system-objects-supported-for-code-generation.html
http://www.mathworks.com/help/releases/R2012b/coder/ug/system-objects-supported-for-code-generation.html
http://www.mathworks.com/help/releases/R2012b/comm/ref/comm.acprclass.html
http://www.mathworks.com/help/releases/R2012b/comm/ref/comm.bchdecoderclass.html
http://www.mathworks.com/help/releases/R2012b/comm/ref/comm.ccdfclass.html
http://www.mathworks.com/help/releases/R2012b/comm/ref/comm.cpmcarrierphasesynchronizerclass.html
http://www.mathworks.com/help/releases/R2012b/comm/ref/comm.goldsequenceclass.html
http://www.mathworks.com/help/releases/R2012b/comm/ref/comm.ldpcdecoderclass.html
http://www.mathworks.com/help/releases/R2012b/comm/ref/comm.ldpcencoderclass.html
http://www.mathworks.com/help/releases/R2012b/comm/ref/comm.ltemimochannelclass.html
http://www.mathworks.com/help/releases/R2012b/comm/ref/comm.memorylessnonlinearityclass.html
http://www.mathworks.com/help/releases/R2012b/comm/ref/comm.mimochannelclass.html
http://www.mathworks.com/help/releases/R2012b/comm/ref/comm.phasenoiseclass.html
http://www.mathworks.com/help/releases/R2012b/comm/ref/comm.pskcarrierphasesynchronizerclass.html
http://www.mathworks.com/help/releases/R2012b/comm/ref/comm.rsdecoderclass.html
http://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.allpolefilterclass.html
http://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.cicdecimatorclass.html
http://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.cicinterpolatorclass.html
http://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.iirfilterclass.html
http://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.signalsourceclass.html

R2012a
Version: 7.9

New Features

Bug Fixes

Compatibility Considerations

R2012a

Component-Based Modeling

Interactive Library Forwarding Tables for Updating Links

Use the new Forwarding Table to map old library blocks to new library blocks. In
previous releases, you could create forwarding tables for a library only at the command
line. Now you can interactively create forwarding tables for a library to specify how to
update links in models to reflect changes in the parameters. To set up a forwarding table
for a library, select File > Library Properties.

You can also specify transformation functions to update old link parameter data using a
MATLAB file on the MATLAB path. Transforming old link parameter data for the new
library block enables you to load old links and preserve parameter data.

After you specify the forwarding table, any links to old library blocks are updated
when you open a model containing links to the library. Library authors can use the
forwarding tables to automatically transform old links into updated links without any
loss of functionality and data. Use the forwarding table to solve compatibility issues with
models containing old links that cannot load in the current version of Simulink. Library
authors do not need to run slupdate to upgrade old links, and can reduce maintenance
of legacy blocks.

For details, see Making Backward-Compatible Changes to Libraries in the Simulink
documentation.

Automatic Refresh of Links and Model Blocks

When you save changes to a library block, Simulink now automatically refreshes all links
to the block in open Model Editor windows. You no longer need to manually select Edit
> Links and Model Blocks > Refresh. When you edit a library block (in the Model
Editor or at the command line), Simulink now indicates stale links which are open in
the Model Editor by showing that the linked blocks are unavailable. When you click the
Model Editor window, Simulink refreshes any stale links to edited blocks, even if you
have not saved the library yet.

For details, see Updating a Linked Block in the Simulink documentation.

12-2

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brkngxr-1.html#brkngxr-6
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brjt29w.html#f13-83231

 Component-Based Modeling

Model Configuration for Targets with Multicore Processors

You can now configure models for concurrent execution using configuration reference
objects or configuration sets. In the previous release, you could use only configuration
sets. Existing configuration sets continue to work.

The workflow to configure a model for concurrent execution has these changes:

• To preserve existing configuration settings for your model, in Model Explorer, expand
the model node. Under the model, right-click Configuration, then select the Show
Concurrent Execution option. This action updates the Solver pane to display a
Concurrent execution options section.

• To create new configuration settings, in Model Explorer, right-click the model
and select Configuration > Add Configuration for Concurrent Execution.
This action updates the Solver pane to display a Concurrent execution options
section.

The following changes have also been made:

• The Ensure deterministic transfer (minimum delay) data transfer now supports
continuous and discrete signals. In the previous release, this data transfer type
supported only continuous signals.

• Data transfer has been enhanced to allow signal branch points outside of referenced
models. In previous releases, signal branching was supported only within referenced
models.

• The following Simulink.SoftwareTarget.TaskConfiguration methods have new names.
Use the new method names.

Old Name New Name

addAperiodicTaskGroup addAperiodicTrigger

deleteTaskGroup deleteTrigger

findTaskGroup findTrigger

• The sldemo_concurrent_execution demo has been updated to reflect the updated
software. It also now contains an example of how to configure the model for an
asynchronous interrupt.

• In the Concurrent Execution dialog box, the Map Blocks To Tasks node has changed
to Tasks and Mapping. The Periodic and Interrupt nodes are now hierarchically under
the Tasks and Mapping node.

12-3

R2012a

For more information, see Configuring Models for Targets with Multicore Processors in
the Simulink User's Guide.

12-4

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bs13l5v.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html

 MATLAB Function Blocks

MATLAB Function Blocks

Integration of MATLAB Function Block Editor into MATLAB Editor

There is now a single editor for developing all MATLAB code, including code for the
MATLAB Function block.

Code Generation for MATLAB Objects

There is preliminary support in MATLAB Function blocks for code generation for
MATLAB classes targeted at supporting user-defined System objects. For more
information about generating code for MATLAB classes, see Code Generation for
MATLAB Classes. For more information about generating code for System objects, see
the DSP System Toolbox™, Computer Vision System Toolbox™, or the Communications
System Toolbox™ documentation.

Specification of Custom Header Files Required for Enumerated Types

If data in your MATLAB Function block uses an enumerated type with a custom header
file, include the header information in the Simulation Target > Custom Code pane of
the Configuration Parameters dialog box. In the Header file section, add the following
statement:

#include "<custom_header_file_for_enum>.h"

Compatibility Considerations

In earlier releases, you did not need to include custom header files for enumerated types
in the Configuration Parameters dialog box.

12-5

http://www.mathworks.com/help/releases/R2012a/toolbox/eml/ug/bta5ivr.html
http://www.mathworks.com/help/releases/R2012a/toolbox/eml/ug/bta5ivr.html

R2012a

Data Management

New Infrastructure for Extending Simulink Data Classes Using MATLAB
Class Syntax

Previously, you could use only the Data Class Designer to create user-defined subclasses
of Simulink data classes such as Simulink.Parameter or Simulink.Signal.

The Data Class Designer, which is based on level-1 data class infrastructure, allows you
to create, modify, or delete user-defined packages containing user-defined subclasses.

In a future release, support for level-1 data class infrastructure is being removed.

There are disadvantages to using the level-1 data class infrastructure:

• The syntax for defining data classes using this infrastructure is not documented.
• The data classes are defined in P-code.
• The infrastructure offers limited capability for defining data classes.

• It does not allow you to add methods to your data classes.
• It does not allow you to add private or protected properties to your data classes.

• It permits partial property matching and does not enforce case sensitivity. For
example, after creating a Simulink.Parameter data object

a = Simulink.Parameter;

you could set the property Value of the data object by using the following command:

a.value = 5;

In R2012a, a replacement called level-2 data class infrastructure is being introduced.
This infrastructure allows you to extend Simulink data classes using MATLAB class
syntax.

Features of level-2 data class infrastructure:

• Ability to upgrade data classes you defined using level-1 data class infrastructure. To
learn how to upgrade, see Upgrade Level-1 Data Classes to Level-2.

• Complete flexibility in defining your data classes, which can now have their own
methods and private properties.

12-6

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/btb06d5.html

 Data Management

• Simplified mechanism for defining custom storage classes for your data classes.
• Strict matching for properties, methods, and enumeration property values.
• Ability to define data classes as readable MATLAB code, not P-code. With class

definitions in MATLAB code, it is easier to understand how these classes work, to
integrate code using configuration management, and to perform peer code reviews.

See the detailed example, Define Level-2 Data Classes Using MATLAB Class Syntax.

Compatibility Considerations

When you migrate your level-1 data classes to level-2 data classes, the way that
MATLAB code is generated and model files are loaded remains the same. However, you
may encounter errors if your code includes the following capabilities specific to level-1
data classes:

• Inexact property names such as a.value instead of the stricter a.Value.
• The set method to get a list of allowable values for an enumeration property.
• Vector matrix containing Simulink.Parameter and Simulink.Signal data

objects. Previously, using level-1 data classes, you could define a vector matrix v as
follows:

a = Simulink.Signal;

b = Simulink.Parameter;

v = [a b];

However, level-2 data classes do not support such mixed vector matrices.

In these cases, modify your code to replace these capabilities with those supported by
level-2 data classes. For more information on how to make these replacements, see
MATLAB Object Oriented Programming.

Change in Behavior of isequal

Previously, when you used function isequal to compare two Simulink data objects, the
function compared only the handles of the two objects. This behavior was incorrect and
did not conform to the intended behavior of isequal in MATLAB. Consider the following
example:

a = Simulink.Parameter;

b = Simulink.Parameter;

isequal(a,b);

12-7

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/btbo7vk.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/isequal.html

R2012a

ans = false

In R2012a, the behavior of isequal has changed to conform to the intended behavior of
isequal in MATLAB. Now, isequal compares two Simulink data objects by comparing
their individual property values. Based on the above example, provided objects a and b
have similar property values, the new result will be as follows.

a = Simulink.Parameter;

b = Simulink.Parameter;

isequal(a,b);

ans = true

isContentEqual Will Be Removed in a Future Release

Previously, you could use method isContentEqual to compare the property values of
two Simulink data objects.

In this release, the behavior of isequal has been changed so that it can replace
isContentEqual.

In a future release, support for isContentEqual will be removed. Use isequal instead.

Compatibility Considerations

If you are using the isContentEqual method in your MATLAB code to compare
Simulink data objects, replace all instances of isContentEqual with isequal.

Change in Behavior of int32 Property Type

Previously, when you created int32 properties for a level-1 data class using the Data
Class Designer, the property value was stored as a double-precision value.

In R2012a, the behavior of int32 properties has changed. Now, int32 properties for a
level-2 data classes are stored as a single-precision values.

RTWInfo Property Renamed

In R2012a, the property RTWInfo of a Simulink data object has been renamed as
CoderInfo.

12-8

http://www.mathworks.com/help/releases/R2012a/techdoc/ref/isequal.html

 Data Management

Compatibility Considerations

If your code uses the RTWInfo property to access data object parameters such as
StorageClass, replace instances of RTWInfo in your code with CoderInfo. Your
existing code will continue to work as before.

deepCopy Method Will Be Removed in a Future Release

Previously, you could use a Simulink data object’s deepCopy method to create a copy of
the data object along with its properties.

a = Simulink.Parameter;

b = a.deepCopy;

In a future release, the deepCopy method will be removed. Use the copy method
instead.

a = Simulink.Parameter;

b = a.copy;

The copy does not create a reference. To create a reference, use the following commands.

a = Simulink.Parameter;

b = a;

New Methods for Querying Workspace Variables

Previously, you could query model workspace variables using the evalin method, but
you had to resave your model after using this method.

In R2012a, use two new Simulink.Workspace methods to query workspace variables
without having to resave your model:

• hasVariable: Determines if a variable exists in the workspace.
• getVariable: Gets the value of a variable from the workspace.

Default Package Specification for Data Objects

In R2012a, you can specify a default data package other than Simulink. Set the default
package in the Data Management Defaults pane of the Simulink Preferences dialog box.

12-9

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/hasvariable.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/getvariable.html

R2012a

Simulink applies your default package setting to the Model Explorer, Data Object
Wizard, and Signal Properties dialog box.

Simulink.Parameter Enhancements

The following enhancements have been made to Simulink.Parameter data objects:

• You can now explicitly specify the data type property of a Simulink.Parameter
object as double.

• When casting values to specified data types, the values of Simulink.Parameter
objects are now cast using the casting diagnostic used for block parameters.

• Scalar value is cast to fixed-point data type.
• Array or matrix value is cast to fixed-point data type.
• Structure value is cast to bus data type.

For more information on creating typesafe models, see Data Typing Rules

Custom Storage Class Specification for Discrete States on Block Dialog
Box

Previously, you could specify custom storage classes (CSCs) for discrete states only by
creating a signal object in the base workspace, associating it with the discrete state, and
assigning the CSC to the signal object.

In R2012a, you can specify CSCs for discrete states directly on the block dialog box.

For example, you can specify a CSC for the discrete state of a Unit Delay block as follows:

1 Open the block dialog box.
2 Click the State Attributes tab.
3 Select a Package.
4 Select the desired CSC from the Storage class drop-down list.
5 Set Custom attributes for the storage class.

Enhancement to set_param

Previously, when you used set_param to make changes to the value of a parameter,
Simulink allowed the change to be committed even if the set_param operation failed.

12-10

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f14-90479.html#f14-90582

 Data Management

Consequently, an invalid value persisted in the parameter and an error was generated
during model simulation.

In this release, the behavior of set_param has been enhanced so that Simulink does
not change the value of a parameter if the set_param operation fails. Instead, the
parameter retains its original value.

Compatibility Considerations

1 Sections of your code might not work if they depend on the value of a parameter set
using set_param within a try-catch block. Consider revising such sections of code
to account for the new behavior.

2 If you are setting dependent parameters using separate set_param commands for
each parameter, consider revising the code so that all dependent parameters are set
using a single command. Setting individual parameters might cause the set_param
operation to fail for the dependent parameters.

For example, consider three dependent parameters of the Integrator block: Lower
Saturation, Upper Saturation, and Initial Condition. The dependency condition
among these parameters is as follows: Lower Saturation ≤ Initial Condition ≤ Upper
Saturation.

Here, setting one parameter at a time might cause the set_param operation to fail
if a dependency condition is not satisfied. It might be better to set all parameters
together using a single set_param command.

Avoid

try

 set_param(Handle, 'Param1', Value1)

end

 set_param(Handle, 'Param2', Value2)

Better

set_param(Handle, 'Param1', Value1, 'Param2', Value2)

Simulink.findVars Support for Active Configuration Sets

Simulink.findVars now searches for variables that are used in a model's active
configuration set. For example, you can now use Simulink.findVars to search for

12-11

R2012a

variables that are used to specify configuration parameters such as Start time and Stop
time.

Use either the Model Explorer or the Simulink.findVars command-line interface to
search for variables used by an active configuration set.

Bus Support for To File and From File Blocks

The To File block supports saving virtual and nonvirtual bus data.

The From File block supports loading nonvirtual bus data.

Bus Support for To Workspace and From Workspace Blocks

The To Workspace block supports saving bus data, with a new default save format,
Timeseries. For bus data, the Timeseries format uses a structure of MATLAB
timeseries objects, and for non-bus data, a MATLAB timeseries object.

The From Workspace block now supports loading bus data. To do so, specify a bus object
as the output data type.

Logging Fixed-Point Data to the To Workspace Block

If you configure the To Workspace block to log fixed-point data as fi objects, then the
workspace variable should use the same data type as the input. To preserve the data type
of scaled doubles inputs, Simulink logs them to fi objects.

Compatibility Considerations

In releases prior to R2012a, when you configured the To Workspace block to log fixed-
point data as fi objects and the input data type was scaled doubles, then Simulink
discarded the scaled doubles data type and logged the data as doubles.

Improved Algorithm for Best Precision Scaling

In R2012a, using best-precision scaling is less likely to result in proposed data types that
could result in overflows. The new algorithm prevents overflows for all rounding modes
except Ceiling.

12-12

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq7cmsp-1.html#bq8l11a-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq7cmsp-1.html#bq8l121-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq7cmsp-1.html#bq8l121-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bso5b65.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.findvars.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/tofile.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/fromfile.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/toworkspace.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/fromworkspace.html

 Data Management

For example, consider a Data Type Conversion block with an Output minimum of
-128.6, and rounding mode Floor, and data type specified as fixdt(1,8). In previous
releases, for an input signal value of -128.6, best precision scaling set the output data
type to fixdt(1,8,0) which resulted in an overflow. In R2012a, for the same model,
best precision scaling now prevents such overflows by setting the output data type to
fixdt(1,8,-1) and the signal value becomes -128.

Compatibility Considerations

Best-precision scaling in R2012a calculates a different data type from that calculated in
R2011b only if the value being scaled is between (RepMin - LSB) and RepMin, where
RepMin is the representable minimum of the proposed data type. Under these conditions,
the output data type used by the block might change to avoid overflow. This change
might reduce precision and result in the propagation of different data types. It might also
affect the data types proposed by the Fixed-Point Advisor and Fixed-Point Tool.

Enhancement of Mask Parameter Promotion

The manner in which promoted variables are named in the mask editor has changed.

Consider the following example.

You mask a subsystem that contains two parameters that are candidates for promotion:
Upper Limit and Lower Limit. You promote parameter Upper Limit, but later decide
to promote a different parameter. So you remove your original promotion of Upper
Limit and promote parameter Lower Limit instead.

In previous releases, even though you changed the promotion to parameter Lower
Limit, the auto-generated name and prompt for this parameter remained UpperLimit.

In this release, when you change the promotion to parameter Lower Limit, the
variable name and the prompt of the parameter change to LowerLimit. However, if
you had manually changed the variable name for your originally promoted parameter
Upper Limit to ChangedLimit, the variable name for the new promotion will also be
ChangedLimit.

12-13

R2012a

File Management

SLX Format for Model Files

In R2012a, Simulink provides a new option to save your model file in the SLX format,
with file extension .slx. The SLX file format contains the same information as an MDL
file and is a compressed package that conforms to the Open Packaging Conventions
(OPC) interoperability standard. SLX stores model information using Unicode UTF-8 in
XML and other international formats.

Saving Simulink in the SLX format:

• Typically reduces file size. The file size reduction between MDL and SLX varies
depending on the model.

• Solves some problems in previous releases with loading and saving MDL files
containing Korean and Chinese characters.

• Supports new features in future releases not supported with MDL format.

The default file format remains MDL, and the MDL format will remain available for the
foreseeable future.

To use the SLX format, see File format for new models and libraries in the Simulink
Preferences documentation.

Compatibility Considerations

SLX will become the default file format in a future release. In R2012a you can optionally
save your models in the SLX format. All functionality and APIs that currently exist
for working with models, such as the get_param and set_param commands, are also
available when using the SLX file format.

The MDL file format will continue to be supported, but, after R2012a, new features
might be available only if you use the SLX file format.

When you use the SLX file format, the new file extension .slx might cause compatibility
issues if your scripts contain hard-coded references to file names with extension .mdl.
To check for future problems, verify that your code works with both the MDL and SLX
formats. If you find any places in your scripts that need to be updated, use functions like
which and what instead of strings with .mdl.

12-14

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/brh72r5-1.html#bs_hdzw

 File Management

Caution: If you use third-party source control tools, be sure to register the model file
extension .slx as a binary file format. If you do not, these third-party tools might
corrupt SLX files when you submit them.

Release Operations with
Possible Compatibility
Considerations

What Happens Action

R2012a In 12a, SLX is
optional. No
compatibility
considerations,
unless you choose
to save as SLX.

Nothing, unless you
choose to try SLX.
If you try SLX, see
the following rows
for possible impact.

None.

Hard-coded
references to
file names with
extension .mdl.

Scripts cannot find
or process models
saved with new file
extension .slx.

Make your code
work with both the
.mdl and .slx
extension.
Use functions like
which and what
instead of strings
with .mdl.

Future release with
SLX default.

Third-party source
control tools that
assume a text format
by default.

Binary format of
SLX files can cause
third-party tools
to corrupt the files
when you submit
them.

Register .slx as a
binary file format
with third-party
source control tools.

For more information, see Saving Models in the SLX File Format in the Simulink
documentation.

The format of content within MDL and SLX files is subject to change. Use documented
APIs (such as get_param, find_system, and Simulink.MDLInfo) to operate on model
data.

Simulink Project Enhancements

In R2012a, Simulink projects include the following enhancements:

12-15

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f2-82897.html#btbr7kx-1

R2012a

• New export to Zip file capability to package and share project files.
• Dependency analysis graph views to visualize project file dependencies.
• Easily compare and merge project file labels and shortcuts to resolve conflicts during

peer review workflow.
• New ability to load a project and use the project API to run setup tasks on a MATLAB

worker.
• Extended source control support with the Source Control Adapter SDK for authoring

integration with third-party tools.

For more information on using projects, see Managing Projects in the Simulink
documentation.

Compatibility Considerations

Functionality What Happens
When You Use This
Functionality?

Use This Functionality
Instead

Compatibility
Considerations

getRootDirectory Warns getRootFolder Replace all instances
of getRootDirectory
with getRootFolder

See the Simulink.ModelManagement.Project.CurrentProject reference page.

12-16

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bs13huh.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.modelmanagement.project.currentprojectclass.html

 Signal Management

Signal Management

Signal Hierarchy Viewer

To display the signal hierarchy for a signal:

1 Right-click a signal.
2 Select the Signal Hierarchy option to open the new Signal Hierarchy Viewer.

For details, see Signal Hierarchy Viewer.

Signal Label Propagation Improvements

Prior to R2012a, signal label propagation behaved inconsistently in different modeling
contexts. Signal label propagation is the process that Simulink uses when it passes signal
labels to downstream connection blocks (for example, Subsystem and Signal Specification
blocks).

In R2012a, signal label propagation is consistent:

• For different modeling constructs (for example, different kinds of signals, different
kinds of buses, model referencing, variants, and libraries)

• In models with or without hidden blocks, which Simulink inserts in certain cases to
enable simulation

• At model load, edit, update, and simulation times

For details, see Signal Label Propagation.

Compatibility Considerations

In the Signal Properties dialog box, for the Show propagated signals parameter, you
can no longer specify the all option. When you save a pre-R2012a model in R2012a,
Simulink changes the all settings to on.

The following blocks no longer support signal label propagation. When you open legacy
models that have signal label propagation enabled for these blocks, Simulink does not
display a warning or error, and does not propagate the signal label.

12-17

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bq4h5ej-1.html#bs85t2i-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bs84bcr.html

R2012a

• Assignment
• Bus Assignment
• Bus Creator
• Bus Selector
• Demux
• Matrix Concatenate
• Mux
• Selector
• Vector Concatenate
• Bus-capable blocks (Memory, Merge, Multiport Switch, Permute Dimensions, Probe,

Rate Transition, Reshape, S-Function, Switch, Unit Delay, Width, and Zero-Order
Hold)

You can name the output of a Bus Creator block and choose to have that name
propagated to any downstream connection blocks.

To view the hierarchy for any bus signal, use the new Signal Hierarchy Viewer.

Frame-Based Processing: Inherited Option of the Input Processing
Parameter Now Provides a Warning

Some Simulink blocks are able to process both sample- and frame-based signals. After
the transition to the new way of handling frame-based processing, signals will no longer
carry information about their frame status. Blocks that can perform both sample-
and frame-based processing will have a new parameter that allows you to specify the
appropriate processing behavior.

To prepare for this change, many blocks received a new Input processing parameter
in previous releases. You can set this parameter to Columns as channels (frame
based) or Elements as channels (sample based), depending upon the type of
processing you want. The third choice, Inherited (this choice will be removed
- see release notes), is a temporary selection that is available to help you migrate
your existing models from the old paradigm of frame-based processing to the new
paradigm.

In this release, your model provides a warning when the following conditions are all met
for any block in your model:

12-18

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bq4h5ej-1.html#bs85t2i-1

 Signal Management

• The Input processing parameter is set to Inherited (this choice will be
removed - see release notes).

• The input signal is frame-based.
• The input signal is a vector, matrix, or N-dimensional array.

Compatibility Considerations

To eliminate this warning, you must upgrade your existing models using the slupdate
function. The function detects all blocks that have Inherited (this choice will
be removed - see release notes) selected for the Input processing parameter.
It then asks you whether you would like to upgrade each block. If you select yes, the
function detects the status of the frame bit on the input port of the block. If the frame
bit is 1 (frames), the function sets the Input processing parameter to Columns as
channels (frame based). If the bit is 0 (samples), the function sets the parameter to
Elements as channels (sample based).

In a future release, the frame bit and the Inherited (this choice will be
removed - see release notes) option will be removed. At that time, the Input
processing parameter in models that have not been upgraded will automatically be
set to either Columns as channels (frame based) or Elements as channels
(sample based). The option set will depend on the library default setting for each
block. If the library default setting does not match the parameter setting in your
model, your model will produce unexpected results. Additionally, after the frame bit
is removed, you will no longer be able to upgrade your models using the slupdate
function. Therefore, you should upgrade your existing modes using slupdate as soon as
possible.

Logging Frame-Based Signals

In this release, a new warning message appears when a Simulink model is logging
frame-based signals and the Signal logging format is set to ModelDataLogs. In
ModelDataLogs mode, signals are logged differently depending on the status of the
frame bit, as shown in the following table.

Status of Frame Bit Today When Frame Bit Is Removed

Sample-based 3-D array with samples in
time in the third dimension

3-D array with samples in
time in the third dimension

12-19

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html

R2012a

Status of Frame Bit Today When Frame Bit Is Removed

Frame-based 2-D array with frames in
time concatenated in the
first dimension

3-D array with samples in
time in the third dimension

This warning advises you to switch your Signal logging format to Dataset. The
Dataset logging mode logs all 2-D signals as 3-D arrays, so its behavior is not dependent
on the status of the frame bit.

When you get the warning message, to continue logging signals as a 2-D array:

1 Select Simulation > Configuration Parameters > Data Import/Export, and
change Signal logging format to Dataset. To do so for multiple models, click the
link provided in the warning message.

2 Simulate the model.
3 Use the dsp.util.getLogsArray function to extract the logged signal as a 2-D

array.

Frame-Based Processing: Model Reference

In this release, the Model block has been updated so that its operation does not depend
on the frame status of its input signals.

Compatibility Considerations

In a future release, signals will not have a frameness attribute, therefore models that use
the Model block must be updated to retain their behavior. If you are using a model with a
Model block in it, follow these steps to update your model:

1 For both the child and the parent models:

• In the Configuration Parameters dialog box, select the Diagnostics >
Compatibility pane.

• Change the Block behavior depends on input frame status parameter to
warning.

2 For both the child and the parent models, run the Simulink Upgrade Advisor. For
details, see “Consult the Upgrade Advisor”.

3 For the child model only:

12-20

 Signal Management

• In the Configuration Parameters dialog box, select the Diagnostics >
Compatibility pane.

• Change the Block behavior depends on input frame status parameter to
error.

Removing Mixed Frameness Support for Bus Signals on Unit Delay and
Delay

This release phases out support for buses with mixed sample and frame-based elements
on the Unit Delay and Delay blocks in Simulink. When the frame bit is removed in
a future release, any Delay block that has a bus input of mixed frameness will start
producing different results. This incompatibility is phased over multiple releases. In
R2012a the blocks will start warning. In a future release, when the frame bit is removed,
the blocks will error.

12-21

R2012a

Block Enhancements

Delay Block Accepts Buses and Variable-Size Signals at the Data Input
Port

In R2012a, the Delay block provides the following support for bus signals:

• The data input port u accepts virtual and nonvirtual bus signals. The other input
ports do not accept bus signals.

• The output port has the same bus type as the data input port u for bus inputs.
• Buses work with:

• Sample-based and frame-based processing
• Fixed and variable delay length
• Array and circular buffers

To use a bus signal as the input to a Delay block, you must specify the initial condition in
the dialog box. In other words, the initial condition cannot come from the input port x0.

In R2012a, the Delay block also provides the following support for variable-size signals:

• The data input port u accepts variable-size signals. The other input ports do not
accept variable-size signals.

• The output port has the same signal dimensions as the data input port u for variable-
size inputs.

The rules for variable-size signal support depend on the input processing mode of the
Delay block. See the block reference page for details.

n-D Lookup Table Block Has New Default Settings

In R2012a, the default values of the Table data and Breakpoints 3 parameters of the
n-D Lookup Table block have changed:

• Table data — reshape(repmat([4 5 6;16 19 20;10 18 23],1,2),[3,3,2])
• Breakpoints 3 — [5, 7]

The default values of all other block parameters remain the same.

12-22

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/delay.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/delay.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/ndlookuptable.html

 Block Enhancements

Blocks with Discrete States Can Specify Custom Storage Classes in the
Dialog Box

In R2012a, the following blocks have additional parameters on the State Attributes tab
to support specification of custom storage classes:

• Data Store Memory
• Delay
• Discrete Filter
• Discrete State-Space
• Discrete Transfer Fcn
• Discrete Zero-Pole
• Discrete-Time Integrator
• Memory
• PID Controller
• PID Controller (2 DOF)
• Unit Delay

In previous releases, specifying a custom storage class for a block required creating a
signal object in the base workspace. In R2012a, you can specify the custom storage class
on the State Attributes tab of the block dialog box.

Inherited Option of the Input Processing Parameter Now Provides a
Warning

Some Simulink blocks are able to process both sample- and frame-based signals. After
the transition to the new way of handling frame-based processing, signals will no longer
carry information about their frame status. Blocks that can perform both sample-
and frame-based processing will have a new parameter that allows you to specify the
appropriate processing behavior. To prepare for this change, many blocks received
a new Input processing parameter in previous releases. See Version 7.8 (R2011b)
Simulink Software for details. You can set this parameter to Columns as channels
(frame based) or Elements as channels (sample based), depending on the type
of processing you want. The third choice, Inherited, is a temporary selection that is
available to help you migrate your existing models from the old paradigm of frame-based
processing to the new paradigm.

12-23

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/rn/bs0fxnc.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/rn/bs0fxnc.html

R2012a

In this release, your model will provide a warning for the following blocks when the
Input processing parameter is set to Inherited, the input signal is frame-based, and
the input signal is a vector, matrix, or N-dimensional array:

• Unit Delay
• Delay
• Bias
• Tapped Delay

Compatibility Considerations

To eliminate this warning, you must upgrade your existing models using the slupdate
function. The function detects all blocks that have Inherited selected for the Input
processing parameter, and asks you whether you would like to upgrade each block. If
you select yes, the function detects the status of the frame bit on the input port of the
block. If the frame bit is 1 (frames), the function sets the Input processing parameter
to Columns as channels (frame based). If the bit is 0 (samples), the function sets
the parameter to Elements as channels (sample based).

In a future release, the frame bit and the Inherited option will be removed. At that
time, the Input processing parameter in models that have not been upgraded will
automatically be set to either Columns as channels (frame based) or Elements
as channels (sample based), depending on the library default setting for each
block. If the library default setting does not match the parameter setting in your model,
your model will produce unexpected results. Also, after the frame bit is removed, you
will no longer be able to upgrade your models using the slupdate function. Therefore,
upgrade your existing models using slupdate as soon as possible.

12-24

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html

 User Interface Enhancements

User Interface Enhancements

Model Advisor: Highlighting

When a Model Advisor analysis is complete, you can specify that the Model Advisor
highlight blocks in a model diagram relevant to warning and failure conditions reported
for individual Model Advisor checks. When you click a check, in the model window you
can easily see which objects pass, receive a warning, or fail the check.

See Consulting the Model Advisor.

Model Explorer: Grouping Enhancements

In the object property table, you can now group data objects by the object type property.
(As in earlier releases, you can also group data objects by other property columns.)

1 Right-click the empty heading in the first column (the column that displays icons
such as the block icon ()).

2 In the context menu, select Group By This Column.

The object property table also displays the number of objects in each group.

For details about grouping, see Grouping by a Property.

12-25

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141979.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsow6lm.html#bso3zmq

R2012a

Model Explorer: Row Filter Button

You can access the row filter options by using the new Row Filter button, which is to
the right of the object count at the top of the Contents pane.

As an alternative, you also can access the row filter options by selecting View > Row
Filter.

For details, see Using the Row Filter Option.

Simulation Data Inspector Enhancements

Signal Data Organization

In R2012a, the Group Signals option allows you to customize the organization of the
signal data in the Signal Browser table. By default, the data is first grouped by Run
Name. You can then group the signal data by model hierarchy or by the logged variable
name. Choose options that help you more easily find signals for viewing or comparing.
For more information, see Modify Grouping in Signal Browser Table.

Block Name Column

The Signal Browser Table now includes a Block Name column. For the signal data,
the Block Name column displays the name of the block that feeds the signal. To add
this column to the table, right-click the Signal Browser table, and from the Columns
list, select Block Name. For more information, see Add/Delete a Column in the Signal
Browser Table.

12-26

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bso34oh.html#bso34zi
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsjs0w9.html#bso7gbu-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsjs0w9.html#bso7gi5-2
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsjs0w9.html#bso7gi5-2

 User Interface Enhancements

Plot Check Box Moved

In the Signal Browser table, the plot check box is no longer in a separate Plot column.
To select a signal for plotting, go to the left-most column where the plot check box is now
located.

Parallel Simulation Support

The Simulation Data Inspector API now works with parallel simulations using the
parfor command. To use the Simulation Data Inspector to record and view the results
from parallel simulations, you can use the following methods to get and set the location
of the Simulation Data Inspector repository:

• Simulink.sdi.getSource
• Simulink.sdi.setSource
• Simulink.sdi.refresh

For more information, see Record Data During Parallel Simulations

Port Value Displays

The behavior of port value displays for blocks has changed. In addition to performance
improvements, the changes include:

• Port values are now port-based instead of block-based.
• Block Output Display Options dialog box has been changed to Value Label

Display Options.
• Show none display option name has been changed to Remove All.
• You can now right-click a signal line and select Show Port Value. In previous

releases, you enable port value displays only through the Block Output Display
Options dialog box.

• The port value display is an empty box you toggle or hover on a block and have not yet
run the simulation. In previous releases, it displayed xx.xx.

• The port value displays the string wait when you toggle or hover on a block that
Simulink has optimized out of the simulation.

For more information, see Displaying Port Values in the Simulink User's Guide.

12-27

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.sdi.getsource.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.sdi.setsource.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.sdi.refresh.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsjs0w9.html#btdfwns-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f13-87931.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html

R2012a

Modeling Guidelines

Modeling Guidelines for High-Integrity Systems

Following are the new modeling guidelines to develop models and generate code for high-
integrity systems:

• hisl_0101: Avoid invariant comparison operations to improve MISRA-C:2004
compliance

• hisl_0102: Data type of loop control variables to improve MISRA-C:2004 compliance
• hisl_0202: Use of data conversion blocks to improve MISRA-C:2004 compliance
• hisl_0312: Specify target specific configuration parameters to improve MISRA-C:2004

compliance
• hisl_0313: Selection of bitfield data types to improve MISRA-C:2004 compliance
• hisl_0401: Encapsulation of code to improve MISRA-C:2004 compliance
• hisl_0402: Use of custom #pragma to improve MISRA-C:2004 compliance
• hisl_0403: Use of char data type improve MISRA-C:2004 compliance

For more information, see Modeling Guidelines for High-Integrity Systems.

MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow

The MathWorks Automotive Advisory Board (MAAB) working group created Version
2.2 of the MAAB Guidelines Using MATLAB, Simulink, and Stateflow. For more
information, see MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow.

12-28

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/bspj57b.html#btbblaq-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/bspj57b.html#btbblaq-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/bspj57b.html#btbbmh8-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/bsfqj7u-1.html#btbbmuw-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/bsfqkfg-1.html#btbbm1l-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/bsfqkfg-1.html#btbbm1l-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/bsfqkfg-1.html#btbbm6m-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/btbbqb1.html#btbbok_-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/btbbqb1.html#btbbopv-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/btbbqb1.html#btbbom4-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/bser45n.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/bser4fn.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/bser4fn.html

 Execution on Target Hardware

Execution on Target Hardware

New Feature for Running Models Directly from Simulink on Target
Hardware

Use the new Run on Target Hardware feature to automatically run a Simulink model on
target hardware.

The feature supports the following target hardware:

• BeagleBoard™
• LEGO MINDSTORMS NXT™

As part of the Run on Target Hardware feature, use the Target Installer to download
and install support for your target hardware. To start the Target Installer, enter
targetinstaller in a MATLAB Command Window, or open a Simulink model and
select Tools > Run on Target Hardware > Install/Update Support Package....

When the Target Installer utility has finished, demos and a block library for your target
hardware are available.

To view the demos, enter doc in the MATLAB Command Window. In the product help
window that opens, look for Other Demos near the bottom, under the Contents tab.

To view the block library, enter simulink in the MATLAB Command Window. This
action will launch the Simulink Library Browser. When the Simulink Library Browser
opens, look for one of the following block libraries:

• Target for Use with BeagleBoard Hardware
• Target for Use with LEGO MINDSTORMS NXT Hardware

For more information, you can read the documentation for Running Models on Target
Hardware.

12-29

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsejk4o-1roth.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsejk4o-1roth.html

R2011b
Version: 7.8

New Features

Bug Fixes

Compatibility Considerations

R2011b

Simulation Performance

Accelerator Mode Now Supports Algebraic Loops

The Accelerator mode now works with models that contain algebraic loops. In previous
releases, using Accelerator mode for models that contained algebraic loops returned error
messages.

13-2

 Component-Based Modeling

Component-Based Modeling

For Each Subsystem Support for Continuous Dynamics

For Each Subsystem blocks support continuous dynamics. This feature simplifies
modeling a system of identical plant models.

The continuous dynamics support includes:

• Non-trigger sample time, including multi-rate and multitasking
• Continuous states
• Algebraic loops
• Blocks in the SimDriveline™, SimElectronics®, and SimHydraulics® products

To see an example using continuous dynamics with a For Each Subsystem block, run the
sldemo_metro_foreach demo.

Enable Port as an Input to a Root-Level Model

You can add an Enable port to the root level of a model. The referenced model can also
use a Trigger port.

Using a root-level Enable port takes advantage of model referencing benefits, without
your having to do either of these extra steps:

• Put all blocks in an enabled subsystem into a referenced model
• Put the entire enabled subsystem in a referenced model

Compatibility Considerations

When you add an enable port to the root-level of a model, if you use the File > Save As
option to specify a release before R2011b, then Simulink replaces the enable port with an
empty subsystem.

Finder Option for Looking Inside Referenced Models

The Finder tool has a new Look inside referenced models option that allows you to
search within a model reference hierarchy.

For details, see Specifying Kinds of Systems To Search.

13-3

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/enable.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bq_5wvg-1.html#bqur6wz-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f3-82702.html#bs3b26t

R2011b

Improved Detection for Rebuilding Model Reference Targets

To determine when to rebuild model reference simulation and Simulink Coder targets,
Simulink uses structural checksums of file contents. The use of checksums provides
more accurate detection of file changes that require a rebuild. Checksum checking is
particularly valuable in environments that store models in content management systems.

For details, see Rebuild.

Model Reference Target Generation Closes Unneeded Libraries

When building model reference simulation and Simulink Coder targets, Simulink opens
any unloaded libraries necessary for the build. Before R2011b, Simulink did not close the
libraries that it opened during the build process.

In R2011b, Simulink closes all libraries no longer needed for target generation or
simulation. Simulink leaves the following kinds of libraries open:

• Libraries used by referenced models running in Normal mode
• Libraries that were already open at the start of the target generation process

Concurrent Execution Support

This release extends the modeling capabilities within the Simulink product to capture
and simulate the effects of deploying your design to multicore systems. In addition, you
can deploy your designs to an actual multicore system using Simulink Coder, Embedded
Coder, and Simulink Real-Time software. You can:

• Create a new model configuration or extend existing configurations for concurrent
execution.

• Use Model blocks to define potential opportunities for concurrency in your design.
• Easily set up and configure concurrent on-target tasks using a task editing interface.
• Use either the GUI or command-line APIs to iteratively map design partitions (based

on Model blocks) to tasks to find optimal concurrent execution scenarios.
• Generate code that leverages threading APIs for Windows, Linux, VxWorks®, and

Simulink Real-Time platforms for concurrent on-target execution.

For further information, see Configuring Models for Targets with Multicore Processors in
the Simulink User's Guide.

13-4

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq7cyf9-1.html#bq7cyf9-3
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/model.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bs13l5v.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html

 Component-Based Modeling

Finer Control of Library Links

Libraries and links have been enhanced with the following features:

• New option to lock links to libraries. Lockable library links enable control of end user
editing, to prevent unintentional disabling of these links. This feature ensures robust
usage of mature stable libraries.

• New check for read-only library files when you try to save, and option to try to make
library writable.

• New options in Links Tool to push or restore individual edited links, in addition to
existing option to push or restore entire hierarchies of links.

• get_param and set_param enhanced to perform loading of library links, making
programmatic manipulation of models easier and more robust. For example, Simulink
now loads links consistently if you use either load_system or open_system before
using get_param.

For details, see Working with Library Links in the Simulink documentation.

Mask Built-In Blocks with the Mask Editor

You can now mask built-in blocks with the Mask Editor to provide custom icons and
dialogs. In previous releases, you could mask only Subsystem, Model, and S-Function
blocks. Now, in the Mask Editor, you can choose to promote any underlying parameter
of any block to the mask. For subsystems, you can choose to promote parameters from
any child blocks. You can associate a single mask parameter with multiple promoted
parameters if they are of the same type. Changing the value of the mask parameter also
sets the value of the associated promoted parameters.

You cannot mask blocks that already have masks. For example, some Simulink blocks,
such as Ramp and Chirp Signal in the Sources library, cannot be masked.

For details, see Masking Blocks and Promoting Parameters in the Simulink
documentation.

Parameter Checking in Masked Blocks

Masked blocks now prevent you entering invalid parameter values by reporting an error
when you edit the mask dialog values. Now the parameter checking behavior of built-in
and masked blocks is unified. Both block types check for valid parameter values when

13-5

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brknh7w.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bs6h8z3-1.html

R2011b

you change block dialog values. Parameter checking at edit time prevents you saving a
model with syntax errors or invalid values.

Previously only built-in blocks reported an error at the time you enter an invalid
parameter with a syntax error, but masked blocks accepted invalid values. In previous
releases you could enter invalid values in masked block dialogs and not see an error
until you compiled the model. If the model was not compiled you could save a model
with syntax errors or other invalid values. In R2011b, parameter checking prevents this
problem.

Parameter checking applies both in the mask dialog and at the command line for invalid
parameters due to syntax errors (e.g. a blank parameter or invalid parameter names).
Parameter checking only applies in the mask dialog for errors defined by the block.
Blocks can define valid parameters, for example, the upper limit must be higher than the
lower limit, or the frequency of a signal cannot be negative etc. This type of parameter
checking does not apply to changes you make at the command line. This allows you to set
up blocks with multiple calls to set_param, without requiring that each step checks for
errors.

Menu Options to Control Variants

You can now select or open Model Variants and Variant Subsystems with the Edit and
context menus. You can use the menus to open any variant choice or override the block
using any variant choice. These options were previously accessible only by opening the
block dialog boxes.

For details, see Modeling Variant Systems in the Simulink documentation.

13-6

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bskmec9.html

 MATLAB Function Blocks

MATLAB Function Blocks

Simulation Supported When the Current Folder Is a UNC Path

In R2011b, you can simulate models with MATLAB Function blocks when the current
folder is a UNC path. In previous releases, simulation of those models required that the
current folder not be a UNC path.

13-7

R2011b

Simulink Data Management

Default Design Minimum and Maximum are []/[], Not -inf/inf

In R2011b, the default design minimum and maximum values for Simulink.Signal,
Simulink.Parameter, Simulink.BusElement, and all blocks are []/[] instead of the
previous default -inf/inf. You can no longer specify design minimum and maximum
values of -inf/inf for blocks and these data objects.

Compatibility Considerations

Simulink generates a warning or error depending on the scenario that led to -inf/inf
being specified as design minimum and maximum values. The following scenarios are
possible.

• When a Simulink data object is loaded from an old MAT-file or MATLAB file in which
the design maximum and minimum values of the data object were specified as -inf/
inf, Simulink generates a warning that -inf/inf is not supported and changes the
design values to the new default, namely, []/[].

• If you set the design minimum and maximum values for the above mentioned data
objects as -inf/inf, Simulink generates a warning that -inf/inf is not supported
and changes the design values to the new default, namely, []/[].

• If the design minimum and maximum values evaluate to -inf/inf during
compilation or at run-time, Simulink generates an error that -inf/inf is not
supported.

• If your model contains an embedded signal object with design minimum and
maximum values specified as -inf/inf, Simulink generates a warning that -inf/
inf is not supported.

Bus Elements Now Have Design Minimum and Maximum Properties

In previous releases, you could specify design minimum and maximum for any data,
including data with a bus data type. This was done by specifying the minimum and
maximum parameters on the associated blocks or data objects.

In R2011b, you can specify design minimum and maximum for each element of a bus
object. You can use this capability to check the values of the corresponding data elements
during update diagram and simulation. With this change, Simulink no longer checks
minimum or maximum specified on block dialogs or data objects for the whole bus.

13-8

 Simulink Data Management

Compatibility Considerations

If you specify the minimum or maximum for bus data on block dialogs or data objects,
even if these values are scalar, Simulink generates a warning and does not use the
minimum or maximum for checking the values of the corresponding data elements.

Compiled Design Minimum and Maximum Values Exposed on Block
Inport and Outport

In R2011b, you can view the compiled design minimum and maximum values at a block
outport from the Model Editor. See Design Ranges. In addition, you can access the
compiled design minimum and maximum values for a block’s inport and outport from the
command line. See Common Block Parameters.

Command-Line Interface for Accessing Compiled Design Minimum and Maximum

Use parameters CompiledPortDesignMax and CompiledPortDesignMin to access
the design minimum of port signals at compile time. You must place the model in the
compile state before querying this parameter. For example, to obtain the compiled design
minimum at the outport of a block, use the following set of commands:

feval(gcs, [],[],[],'compile');

ports = get_param(gcb,'PortHandles');

outportMax = get_param(ports.Outport, 'CompiledPortDesignMax')

feval(model, [],[],[],'term');

CompiledPortDesignMax and CompiledPortDesignMin return different values
depending on the type of signal.

• [] if none of the signals has compiled minimum or maximum
• scalar if all signals have the same specified compiled minimum or maximum
• cell array for Mux signals
• when the model is set to strict bus mode: structure for bus signals
• when the model is not set to strict bus mode: [] for virtual bus signals

Back-Propagated Minimum and Maximum of Portion of Wide Signal Are
Now Ignored

In previous releases, Simulink back-propagated the design minimum and maximum of
a portion of a wide signal to the source port of that portion. The back-propagated design
minimum and maximum were used in range checking.

13-9

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f15-90106.html#bs5nbcx
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/f23-7517.html

R2011b

In R2011b, Simulink generates a warning and ignores the back-propagated design
minimum and maximum of a portion of a wide signal during range checking.

If you want to use the back-propagated design minimum and maximum for range
checking of a portion of a wide signal, insert a Signal Conversion block with its
Output parameter set to Signal copy in front of that portion.

Easier Importing of Signal Logging Data

You can load logged signal data into a model more easily in R2011b.

You can load elements of a Simulink.SimulationData.Signal object. When
you set the Configuration Parameters > Data Import/Export >
Signal logging format parameter to Dataset, the signal logging output
includes Simulink.SimulationData.Signal objects. You can then use the
Simulink.SimulationData.Dataset.getElement method to specify signal elements
for the Configuration Parameters > Data Import/Export > Input parameter.

For an example of loading logged signal data into a model, open the
sldemo_mdlref_bus demo. For more information, see Importing Signal Logging Data.

Partial Specification of External Input Data

You can load external data for a subset of root-level Inport ports, without having to
create data structures for the ports for which you want to use ground values.

Using the Configuration Parameters > Data Import/Export Input parameter, in
the comma-separated list, enter an empty matrix to specify ground values for a port.

Using an empty matrix for ports for which you want to use ground values simplifies the
specification of external data to input. Also, you can use an empty matrix for an array of
buses signal, which you cannot load into a root-level Inport block.

Command-Line Interface for Signal Logging

You can now use the MATLAB command line to perform the same signal logging tasks
that you can perform with the Signal Logging Selector tool.

To configure signal logging from the command line, use methods for the following classes:

13-10

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.simulationdata.signal.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bs40jma.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq7cpr_.html#bq7cpvk-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsw9ndi.html

 Simulink Data Management

Simulink.SimulationData Class Signal Logging Configuration Component

ModelLoggingInfo Signals to log for a given simulation. Use to override the
logging settings stored within a given model or referenced
model.

SignalLoggingInfo Logging settings for a single signal within a model.
LoggingInfo Collection of signal logging properties. Use to change logging

settings, such as decimation, for a signal.

For more information, see Command-Line Interface for Overriding Signal Logging
Settings.

Access to the Data Import/Export Pane from the Signal Logging Selector

The Signal Logging Selector toolbar includes a button () to open the Configuration
Parameters > Data Import/Export pane. Use the Data Import/Export pane to
configure the export of output signal and state data to the MATLAB® workspace during
simulation.

Inexact Property Names for User-Defined Data Objects Will Not Be
Supported in a Future Release

In previous releases, you could access a property of a user-defined data object using an
inexact property name. For example, after creating a Simulink.Parameter data object

a = Simulink.Parameter;

you could set the property Value of the data object by using the following command.

a.v = 5;

In R2011b, Simulink generates a warning if you access a property of a user-defined data
object using an inexact property name. While Simulink accesses the property using the
inexact match, support for this type of matching will be removed in a future release.

Based on the example above, set the Value of the data object using the following
command instead.

a.Value = 5;

13-11

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.simulationdata.modellogginginfo.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.simulationdata.signallogginginfo.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.simulationdata.logginginfo.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsw9ndi.html#bs40nea
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsw9ndi.html#bs40nea

R2011b

Alias Types No Longer Supported with the slDataTypeAndScale Function

Simulink no longer supports calls to slDataTypeAndScale when:

• The first argument is a Simulink.AliasType object
• The first argument is a Simulink.NumericType object with property IsAlias set to

true

Compatibility Considerations

If your model calls the internal function slDataTypeAndScale, you might encounter a
compilation error for this model even though it previously compiled successfully. In this
case, follow the advice of the error message to update your model to remove the call to
slDataTypeAndScale.

Simulink.StructType Objects Will Not Be Supported in a Future Release

In a future release, support for Simulink.StructType objects will be removed. Use
structured parameters or arrays of buses instead.

Old Block-specific Data Type Parameters No Longer Supported

In R2011b, Simulink generates a warning if you try to access any of these old block-
specific data type parameters: DataType, DataTypeMode, DataTypeScalingMode, and
Scaling. In a future release, support for these data type parameters will be removed.
Use DataTypeStr instead.

Simulink.Signal and Simulink.Parameter Will Not Accept Input Arguments

Simulink generates an error if you pass an input argument to the classes
Simulink.Signal and Simulink.Parameter.

Compatibility Considerations

Simulink.Signal and Simulink.Parameter classes accepted input arguments in
previous versions. However, the arguments were ignored for both classes.

13-12

 Simulink Data Management

Data Import/Export Pane Changes

The following parameters of the Configuration Parameters > Import/Export pane
have changed to improve their usability.

Pre-R2011b Parameter Name Changed R2011b Parameter Name

Signal Logging Selector Configure Signals to Log
Return as single object Save simulation output as single

object
Inspect signal logs when simulation is
paused/stopped

Record and inspect simulation output

Simulation Data Inspector Tool Replaces Time Series Tool

The Simulation Data Inspector is now the default browser for logged simulation
results. Use the Simulation Data Inspector for viewing all Simulink logged data results,
including as a replacement for the Time Series tool.

Compatibility Considerations

In R2011b, the Time Series tool (tstool) no longer supports Simulink data results.

13-13

http://www.mathworks.com/help/releases/R2012a/techdoc/ref/tstool.html

R2011b

Simulink File Management

Project Management

Organize large modelling projects with new Simulink Projects. Find all your required
files, manage and share files, settings, and user-defined tasks, and interact with source
control.

Projects can promote more efficient team work and local productivity by helping you:

• Find all the files that belong with your project
• Share projects using integration with external source control tool Subversion
• View and label modified files for peer review workflows
• Create standard ways to initialize and shutdown a project
• Create, store and easily access common operations

You can use projects to manage:

• Your design (.mdl, .m, .mat, and other files, source code for S-functions, data)
• The results or artifacts (simulation results, generated code, logfiles from code

generation, reports).
• A set of user-defined actions to use with your project (e.g., run setup code; open

models, simulate; build; run shutdown code).
• Change sets of modified files for review and interaction with source control (such as

check out, compare revisions, tag or label, and check in)

For more information and a demo project to try, see Managing Projects.

13-14

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bs13huh.html

 Simulink Signal Management

Simulink Signal Management

Signal Conversion Block Enhancements

The Output parameter of the Signal Conversion block now has a Signal copy option
that replaces the pre-R2011b Contiguous copy and Bus copy options. The Signal
copy option handles both non-bus and bus input signals, so that you do not need to
update the setting if the input signal changes from a non-bus to a bus signal, or from a
bus to a non-bus signal.

Also, setting the Output parameter to Nonvirtual bus enables the Data type
parameter. You can use the Data type parameter to specify a Simulink.Bus object as the
output data type for the Signal Conversion block. Using a bus object:

• Eliminates the need to use a Simulink.Bus object as the data type of an upstream
Bus Creator block.

• Enables you to pass a virtual bus signal from a Bus Selector block and then create a
nonvirtual bus signal.

Compatibility Considerations

The Virtual bus and Nonvirtual bus options for the Output parameter continue to
work as they did in previous releases.

For models created in a release before R2011b, two compatibility issues can occur. Both
of the compatibility issues occur when the Signal Conversion block a virtual bus as its
input and has its Output parameter set to Contiguous copy.

The first compatibility issue occurs if the output of the Signal Conversion block has a
Simulink.Signal object associated with it.

• Prior to R2011b, Simulink automatically performed a bus-to-vector conversion and did
not report an error.

• If you open the pre-R2011b model in R2011b, then Simulink converts the
Contiguous copy option setting to Signal copy and does not convert the bus
signal to a vector. Because you cannot associate a Simulink.Signal object with a
virtual bus signal, Simulink reports an error.

13-15

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/signalconversion.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.signal.html

R2011b

The second compatibility issue occurs if a virtual bus signal from a Signal Conversion
block that has its Output parameter set to Contiguous copy is input to a Bus Creator
block that has a Simulink.Bus object as its output data type.

• Prior to R2011b, Simulink considered the virtual bus signal to be a vector (as in the
first compatibility issue), and did not report an error.

• If you open the model in R2011b, Simulink considers the virtual bus signal to be a
bus signal. That bus signal and the bus object associated with Bus Creator block are
inconsistent, so Simulink reports an error.

To avoid each of these compatibility issues, insert a Bus to Vector block at the input of
the Signal Conversion block.

Environment Controller Block Support for Non-Bus Signals

You can use a non-bus signal as an input to the Environment Controller block, even if
you set the Configuration Parameters > Diagnostics > Connectivity > Non-bus
signals treated as bus signals diagnostic to error.

Sample Time Propagation Changes

The way that Simulink software propagates sample time has been improved for models
with the Optimization > Signals and Parameters > Inline parameters check box
cleared (off). This change:

• Reduces the difference in sample time propagation results between when Inline
parameters is off and on.

• Improves the performance of your model.

Compatibility Considerations

This change is beneficial to the performance of your model. Not all models are affected by
the sample time propagation change. To determine if your model is affected, see Sample
Time Propagation and Inline Parameters Incompatibility. That page provides guidelines,
including information about a script, to help you evaluate your models.

To do this without the script,

• If Inline parameters is on for your model, your model is not affected by this change.

13-16

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/environmentcontroller.html
http://www.mathworks.com/support/solutions/en/data/1-EQ5TQL
http://www.mathworks.com/support/solutions/en/data/1-EQ5TQL

 Simulink Signal Management

• If Inline parameters is off in your model, in R2011a or earlier, use the following
procedure for each block in your model:

1 With Inline parameters off for your model, select Edit > Update Diagram.
2 Use get_param to collect the CompiledSampleTime value of the block.
3 Turn Inline parameters on for your model.
4 Update the diagram again.
5 Use get_param to collect the CompiledSampleTime value of the block.
6 Compare the results from steps 2 and 5. If they are different, and the result from

step 5 is not inf, your model might be affected. To determine for certain if your
model is affected, perform steps 1 and 2 in R2011b and compare the results with
those of steps 1 and 2 from R2011a or earlier.

If you prefer the sample time propagation results from R2011a and earlier with Inline
parameters off, you can ensure the desired sample times by manually specifying them
on the affected block. If the block does not have a sample time parameter, use the Signal
Specification block to specify sample times on the input or output signal.

Frame-Based Processing

In signal processing applications, you often need to process sequential samples of data at
once as a group, rather than one sample at a time. Simulink documentation refers to the
former as frame-based processing, and to the latter as sample-based processing. A frame
is a collection of samples of data, sequential in time.

Historically, Simulink-family products that can perform frame-based processing
propagate frame-based signals throughout a model. The frame status is an attribute
of the signals in a model, just as data type and dimensions are attributes of a signal.
The Simulink engine propagates the frame attribute of a signal by means of a frame bit,
which can either be on or off. When the frame bit is on, Simulink interprets the signal
as frame based and displays it as a double line, rather than the single line sample-based
signal.

Beginning in R2010b, MathWorks started to significantly change the handling of frame-
based processing. In the future, frame status will no longer be a signal attribute. Instead,
individual blocks will control whether they treat inputs as frames of data or as samples
of data. To learn how a particular block handles its input, you can refer to the block
reference page.

13-17

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/get_param.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/get_param.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/signalspecification.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/signalspecification.html

R2011b

To make the transition to the new paradigm of frame-based processing, the following
Simulink blocks have a new Input processing parameter:

• Delay
• Detect Change
• Detect Decrease
• Detect Fall Negative
• Detect Fall Nonpositive
• Detect Increase
• Detect Rise Nonnegative
• Detect Rise Positive
• Difference
• Discrete Derivative
• Transfer Fcn Real Zero
• Unit Delay

You can specify three options with the Input processing parameter:

• Elements as channels (sample-based)

• Columns as channels (frame-based)

• Inherited

For more information about R2011b changes relating to frame-based processing, in the
DSP System Toolbox release notes, see Frame-Based Processing.

Compatibility Considerations

When you choose the Inherited option for the Input processing parameter and
the input signal is frame-based, Simulink® will generate a warning or error in future
releases.

13-18

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/delay.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectchange.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectdecrease.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectfallnegative.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectfallnonpositive.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectincrease.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectrisenonnegative.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectrisepositive.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/difference.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretederivative.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/transferfcnrealzero.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/unitdelay.html
http://www.mathworks.com/help/releases/R2012a/toolbox/dsp/rn/bs1rpm7.html#bs1rpr_-1

 Block Enhancements

Block Enhancements

New Delay Block That Upgrades the Integer Delay Block

In R2011b, the new Delay block in the Discrete library supports:

• Variable delay length
• Specification of initial condition from input port
• Reset of the state to the initial condition using an external reset signal
• State storage
• Use of a circular buffer instead of an array buffer for state storage

13-19

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/delay.html

R2011b

13-20

 Block Enhancements

When you open models created in previous releases, the new Delay block replaces each
instance of the Integer Delay block, which no longer appears in the Discrete library. The
Delay block is an upgrade of the Integer Delay block. Every parameter from the Integer
Delay block maps directly to a parameter in the Delay block.

Compatibility Considerations

The following incompatibilities might affect simulation of pre-R2011b models that use
the Integer Delay block:

Source of
Incompatibility

Behavior in the
Integer Delay Block

Behavior in the
Delay Block

Rationale How to Avoid an
Error

Initial
condition for
input signals
of N-by-1
or 1-by-N
dimensions and
sample-based
processing

Suppose that delay
length is D. For
Initial condition,
the Integer Delay
block supports
signal dimensions
of D-by-N and N-
by-D.

For Initial
condition, the
Delay block
supports signal
dimensions of N-
by-1-by-D or 1-
by-N-by-D. Using
any other format
causes an error
during simulation.

The Delay
block prevents
misinterpretation
of the dimensions
for Initial
condition by
accepting only one
format for signal
dimensions.

Verify that Initial
condition uses
N-by-1-by-D or 1-
by-N-by-D for the
format of signal
dimensions.

Initial
condition for
input signals
of M-by-N
dimensions and
sample-based
processing

Suppose that the
delay length is
D. For Initial
condition, the
Integer Delay block
supports signal
dimensions of D-by-
M-by-N, M-by-N-
by-D, and M-by-D-
by-N.

For Initial
condition, the
Delay block
supports signal
dimensions of M-
by-N-by-D. Using
any other format
causes an error
during simulation.

The Delay
block prevents
misinterpretation
of the dimensions
for Initial
condition by
accepting only one
format for signal
dimensions.

Verify that Initial
condition uses M-
by-N-by-D for the
format of signal
dimensions.

Sample time For Sample time,
the Integer Delay
block supports 0.
In this case, the
block output has
continuous sample

Setting Sample
time to 0 for the
Delay block causes
an error during
simulation.

Because the Delay
block belongs to the
Discrete library, it
should not support
continuous sample
time.

Use a discrete
sample time, or set
Sample time to
–1 to inherit the
sample time.

13-21

R2011b

Source of
Incompatibility

Behavior in the
Integer Delay Block

Behavior in the
Delay Block

Rationale How to Avoid an
Error

time, but fixed in
minor time step.

Rate transition
usage

The Integer Delay
block handles rate
transitions for
sample- and frame-
based signals.

The Delay block
handles rate
transitions only
for sample-based
signals. For frame-
based signals,
simulation stops
due to an error.

This usage of the
Delay block is not
recommended.

Do not use the
Delay block for
rate transitions
with frame-based
signals.

Sqrt and Reciprocal Sqrt Blocks Support Explicit Specification of
Intermediate Data Type

In R2011b, both the Sqrt and Reciprocal Sqrt blocks enable specifying the data type for
intermediate results. In previous releases, specifying this data type was available for the
Reciprocal Sqrt block, but not the Sqrt block.

The Reciprocal Sqrt block now provides additional options for specifying the data type for
intermediate results:

13-22

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/sqrt.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/reciprocalsqrt.html

 Block Enhancements

This enhancement enables explicit specification of the data type. In previous releases,
specification of this data type was limited to inheritance rules.

For a summary of data type configurations that are valid (input, output, and
intermediate results), refer to the block reference page.

Discrete Zero-Pole Block Supports Single-Precision Inputs and Outputs

The Discrete Zero-Pole block now accepts and outputs signals of single data type.

n-D Lookup Table Block Supports Tunable Table Size

The n-D Lookup Table block provides new parameters for specifying a tunable table size
in the generated code.

13-23

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretezeropole.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/ndlookuptable.html

R2011b

This enhancement enables you to change the size and values of your lookup table and
breakpoint data without regenerating or recompiling the code.

Boolean Output Data Type Support for Logic Blocks

The following blocks now enable specification of Output data type, which can be uint8
or boolean:

• Detect Change
• Detect Decrease
• Detect Fall Negative
• Detect Fall Nonpositive

13-24

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectchange.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectdecrease.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectfallnegative.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectfallnonpositive.html

 Block Enhancements

• Detect Increase
• Detect Rise Nonnegative
• Detect Rise Positive

This enhancement enables you to specify the output data type to be boolean. In previous
releases, the blocks always used uint8 for the output data type.

Derivative Block Parameter Change

The block Linearization Time Constant s/(Ns + 1) parameter has changed to
Coefficient c in the transfer function approximation s/(c.s + 1) used for
linearization. Correspondingly, the command-line parameter has changed from
LinearizePole to CoefficientInTFapproximation.

13-25

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectincrease.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectrisenonnegative.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectrisepositive.html

R2011b

User Interface Enhancements

Model Explorer: First Two Columns in Contents Pane Remain Visible

In the object property table, the behavior of the first two columns (the object icon and
the Name property) has changed. These columns now remain visible, regardless of how
far you scroll to the right. For an example that illustrates this feature, see Horizontal
Scrolling in the Object Property Table.

Model Explorer: Subsystem Code View Added

Model Explorer provides an additional Column View option: Subsystem Code. The
Subsystem Code view displays Subsystem block code generation properties. For details
about views, see The Model Explorer: Controlling Contents Using Views.

Model Explorer: New Context Menu Options for Model Configurations

R2011b provides new context menu options for a model in the Model Hierarchy pane.
A new menu option, Configuration, organizes previous and new model configuration
operations. To view these configuration options, in the Model Hierarchy pane, right-
click a model node and select Configuration. The following table describes the available
configuration options.

To... Select...

Load an existing configuration set to the
model

Import

Save the model’s active configuration set to
a:

• .m file (as MATLAB function or script)
or

• .mat file (Simulink.ConfigSet
object)

Export Active Configuration Set

Attach a new configuration set to the model Add Configuration
Create a configuration reference and attach
it to the model

Add Configuration Reference

13-26

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsf88_h.html#bs1f8k4-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsf88_h.html#bs1f8k4-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsow49o.html

 User Interface Enhancements

To... Select...

Create a concurrent execution
configuration set

Add Configuration for Concurrent
Execution

Convert the model’s active configuration
set to a configuration reference, which then
becomes active for the model

Convert Active Configuration to
Reference

Two new context menu options are available for a configuration set node under a model
node in the Model Hierarchy pane.

To... Use...

Convert an active configuration set to a
configuration reference

Convert to Configuration Reference
(only enabled for active configuration sets)

Convert a configuration set to a concurrent
execution configuration set

Convert to Configuration for
Concurrent Execution

In R2011b, if a model has an active configuration reference, you can create a copy of
the configuration reference for each referenced model. To perform this operation, in the
Model Hierarchy pane, right-click the active configuration reference node and select
Propagate to Referenced Models.

For more information on model configurations, see Managing Model Configurations.

Simulation Data Inspector Enhancements

Command-Line Interface

The Simulation Data Inspector command-line interface is now available to view and
compare signal data, and compare two simulation runs of data. For more information, see
Record and Inspect Signal Data Programmatically.

Report Generation

Using the Simulation Data Inspector tool or the command-line interface, you can now
generate a report of a Simulation Data Inspector session. To generate a report using
the GUI, see Create Simulation Data Inspector Report. To generate a report using the
command-line interface, see the Simulink.sdi.report function.

13-27

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/br8hjbf.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsjs0w9.html#bs3g5bf
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsjs0w9.html#bs57vxf
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.sdi.report.html

R2011b

Support of Scope, To File, and To Workspace Blocks

The Simulation Data Inspector now supports output from the following blocks:

• Scope and Floating Scope (Structure with time and Array format)
• To File (Timeseries format)
• To Workspace (Structure with time format)

Conversion of Error and Warning Message Identifiers

For R2011b, error and warning message identifiers have changed in Simulink.

Compatibility Considerations

If you have scripts or functions that use message identifiers that changed, you must
update the code to use the new identifiers. Typically, message identifiers are used to turn
off specific warning messages, or in code that uses a try/catch statement and performs
an action based on a specific error identifier.

For example, the MATLAB:eigs:NonPosIntSize identifier has
changed to MATLAB:eigs:RoundNonIntSize. If your code checks
for MATLAB:eigs:NonPosIntSize, you must update it to check for
MATLAB:eigs:RoundNonIntSize instead.

To determine the identifier for a warning, run the following command just after you see
the warning in the MATLAB Command Window.

[MSG,MSGID] = lastwarn;

This command saves the message identifier to the variable MSGID.

To determine the identifier for an error, run the following command just after you see the
error in the MATLAB Command Window.

exception = MException.last;

MSGID = exception.identifier;

Note: Warning messages indicate a potential issue with your code. While you can turn off
a warning, a suggested alternative is to change your code so it runs warning-free.

13-28

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/scope.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/tofile.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/toworkspace.html

 New Modeling Guidelines

New Modeling Guidelines

Modeling Guidelines for High-Integrity Systems

Following are the new modeling guidelines to develop models and generate code for high-
integrity systems:

• hisl_0201: Define reserved keywords to improve MISRA-C:2004 compliance
• hisf_0211: Protect against use of unary operators in Stateflow Charts to improve

MISRA-C:2004 compliance
• hisf_0212: Data type of Stateflow for loop control variables to improve MISRA-C: 2004

compliance
• hisf_0213: Protect against divide-by-zero calculations in Stateflow charts to improve

MISRA-C: 2004 compliance

Following are the new high-integrity modeling guidelines for configuration parameter
diagnostics:

• hisl_0301: Configuration Parameters > Diagnostics > Compatibility
• hisl_0302: Configuration Parameters > Diagnostics > Data Validity > Parameters
• hisl_0303: Configuration Parameters > Diagnostics > Data Validity > Merge block
• hisl_0304: Configuration Parameters > Diagnostics > Data Validity > Model

Initialization
• hisl_0305: Configuration Parameters > Diagnostics > Data Validity > Debugging
• hisl_0306: Configuration Parameters > Diagnostics > Connectivity > Signals
• hisl_0307: Configuration Parameters > Diagnostics > Connectivity > Buses
• hisl_0308: Configuration Parameters > Diagnostics > Connectivity > Function calls
• hisl_0309: Configuration Parameters > Diagnostics > Type Conversion
• hisl_0310: Configuration Parameters > Diagnostics > Model Referencing
• hisl_0311: Configuration Parameters > Diagnostics > Stateflow

For more information, see Modeling Guidelines for High-Integrity Systems.

Modeling Guidelines for Code Generation

Following are the new modeling guidelines for code generation:

13-29

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/bsfqj7u-1.html#bs317vl-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/bsxb8qd.html#bs4p5jb-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/bsxb8qd.html#bs4p5jb-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/bsxb8qd.html#bs4p360-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/bsxb8qd.html#bs4p360-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/bsxb8qd.html#bs4p67h-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/bsxb8qd.html#bs4p67h-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/br9y9w6-1.html#bs5xbrw-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/br9y9w6-1.html#bs5yxvc-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/br9y9w6-1.html#bs5yxuv-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/br9y9w6-1.html#bs5xgk4-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/br9y9w6-1.html#bs5xgk4-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/br9y9w6-1.html#bs5xgt6-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/br9y9w6-1.html#bs5xhvb-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/br9y9w6-1.html#bs5xm4l-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/br9y9w6-1.html#bs5xndb-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/br9y9w6-1.html#bs5xnkr-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/br9y9w6-1.html#bs5xnrt-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/br9y9w6-1.html#bs5xn2s-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/bser45n.html

R2011b

• cgsl_0104: Modeling global shared memory using data stores
• cgsl_0105: Modeling local shared memory using data stores

For more information, see Modeling Guidelines for Code Generation.

13-30

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/bs5xbra-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/bs5y5hg-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/bsp7w4q.html

R2011a
Version: 7.7

New Features

Bug Fixes

Compatibility Considerations

R2011a

Simulation Performance

Restore SimState in Models Created in Earlier Simulink Versions

Simulink 7.7 supports the restoring of a SimState from a MAT file saved in a previous
version of Simulink. During this operation, Simulink restores as much of the SimState
object as possible and automatically resets the simulation start time to the stop time of
the SimState object.

You can choose to receive a warning or an error by setting a new diagnostic, SimState
object from earlier release, on the Diagnostic Pane of the Configuration Parameters
dialog.

Improved Absolute Tolerance Implementation

The processing of the absolute tolerance parameter in the Solver configuration pane,
and of the absolute tolerance parameters for continuous blocks and S-functions with
continuous states, has been enhanced. As a result, these parameters provide a more
robust and consistent behavior. These error tolerances are used by variable-step solvers
to control integration error for continuous states in a model.

A new SimStruct function ssSetStateAbsTol has been introduced to allow for
setting the absolute tolerances for the S-Function continuous states in models using a
variable-step solver. Use of ssGetAbsTol to either get or set absolute tolerances is not
recommended. Instead, use ssGetStateAbsTol and ssSetStateAbsTol to get and set
tolerances, respectively.

14-2

 Component-Based Modeling

Component-Based Modeling

Refreshing Linked Blocks and Model Blocks

You can refresh linked blocks and Model blocks in a library or model using the Simulink
Editor. Select the Edit > Links and Model Blocks > Refresh.

Refreshing the linked blocks updates the linked blocks to reflect any changes to the
original library block. In releases before R2011a, to update linked blocks, you had to take
one of the following actions:

• Close and reopen the library that contains the linked blocks that you want to refresh.
• Update the diagram (Edit > Links and Update Diagram or Ctrl+D).

You can update a specific Model block by right-clicking the Model block and selecting
Refresh.

Compatibility Considerations

The new menu option, Edit > Links and Model Blocks > Refresh menu item
replaces Edit > Model Blocks > Refresh Model Blocks. Both the old and new
options update Model blocks in the same way.

Enhanced Model Block Displays Variant Model Choices

The Model Variants block now displays model names for all variant choices, making it
easier to select and configure available variants.

See Setting Up Model Variants.

Creating a Protected Model Using the Simulink Editor

You can protect a model using the Simulink Editor. Right-click the Model block that
references the model for which you want to generate protected model code. In the context
menu, select Code Generation > Generate Protected Model. For details, see
Creating a Protected Model.

In earlier releases, you had to use the Simulink.ModelReference.protect command
to create a protected model.

14-3

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bskoahv-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/br6xrii.html#br65uos-1

R2011a

MATLAB Function Blocks

Embedded MATLAB Function Block Renamed as MATLAB Function Block

In R2011a, Embedded MATLAB Function blocks were renamed as MATLAB Function
blocks in Simulink models. The block also has a new look:

Compatibility Considerations

If you have scripts that refer to Embedded MATLAB library blocks by path, you need
to update the script to reflect the new block name. For example, if your script refers to
simulink/User-Defined Functions/Embedded MATLAB Function or eml_lib/
Embedded MATLAB Function, change Embedded MATLAB Function to MATLAB
Function.

Support for Buses in Data Store Memory

MATLAB Function blocks now support buses as shared data in Data Store Memory
blocks.

14-4

 Simulink Data Management

Simulink Data Management

Signal Logging Selector

The Signal Logging Selector is a new centralized signal logging tool for:

• Reviewing all signals in a model hierarchy that are configured for logging (set with
the Signal Properties dialog box)

• Overriding signal logging settings for specific signals
• Controlling signal logging throughout a model reference hierarchy in a more

streamlined way than in previous releases

You can use the Signal Logging Selector with Simulink and Stateflow signals.

To open the Signal Logging Selector, in the Configuration Parameters > Data
Import/Export pane, select the Signal Logging Selector button. For a Model block,
you can right-click the block and select the Log Referenced Signals menu item. (The
Signal Logging Selector replaces the Model Reference Signal Logging dialog box.)

See Overriding Signal Logging Settings and Using the Signal Logging Selector to View
the Signal Logging Configuration.

Dataset Format Option for Signal Logging Data

You can now select a format for signal logging data. Use the Configuration
Parameters > Data Import/Export > Signal logging format parameter to select the
format:

• ModelDataLogs — Simulink.ModelDataLogs format (default; before R2011a, this
format was the only one supported)

• Dataset — Simulink.SimulationData.Dataset format

The Dataset format:

• Uses MATLAB timeseries objects to store logged data (rather than
Simulink.Timeseries and Simulink.TsArray objects). MATLAB timeseries objects
allow you to work with logging data in MATLAB without a Simulink license.

• Supports logging multiple data values for a given time step, which can be important
for Iterator subsystem and Stateflow signal logging.

14-5

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsw9ndi.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsw9zjq.html#bsw9zku
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsw9zjq.html#bsw9zku
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.modeldatalogs.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.simulationdata.dataset.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/timeseriesclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.timeseries.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.tsarray.html

R2011a

• Provides an easy-to-analyze format for logged signal data for models with deep
hierarchies, bus signals, and signals with duplicate or invalid names.

• Supports the Simulation Data Inspector.
• Avoids the limitations of the ModelDataLogs format. For example, for a virtual

bus, ModelDataLogs format logs only one of multiple signals that share the same
source block. For a description of ModelDataLogs format limitations, see Bug Report
495436.

To convert a model that contains referenced models to use the
Dataset format throughout the model reference hierarchy, use the
Simulink.SimulationData.updateDatasetFormatLogging function.

If you have logged signal data in the ModelDataLogs format, you can use the
Simulink.ModelDataLogs.convertToDataset function to convert the ModelDataLogs
data to Dataset format.

To work with Dataset format data, you can use properties and methods of the following
classes:

• Simulink.BlockPath
• Simulink.SimulationData.BlockPath
• Simulink.SimulationData.Dataset
• Simulink.SimulationData.Signal
• Simulink.SimulationData.DataStoreMemory

For information about the signal logging format, see Specifying the Signal Logging Data
Format

From File Block Supports Zero-Crossing Detection

The From File block allows you to specify zero-crossing detection.

Signal Builder Block Now Supports Virtual Bus Output

You can now define the type of output to use on the Signal Builder block now outputs
signals. With this release, the Signal Builder block has two options:

• Ports

14-6

http://www.mathworks.com/support/bugreports/search_results?search_executed=1&keyword=495436&release_filter=Exists+in&release=0&selected_products=
http://www.mathworks.com/support/bugreports/search_results?search_executed=1&keyword=495436&release_filter=Exists+in&release=0&selected_products=
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.simulationdata.updatedatasetformatlogging.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.modeldatalogs.converttodataset.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.blockpath.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.simulationdata.blockpath.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.simulationdata.dataset.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.simulationdata.signal.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.simulationdata.datastorememory.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsw9nbq.html#bsxb84m
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsw9nbq.html#bsxb84m
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/fromfile.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/signalbuilder.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/signalbuilder.html

 Simulink Data Management

Sends individual signals from the block. An output port named Signal N appears for
each signal N. This option is the default setting. In previous releases, the block uses
this type of signal output.

• Bus

Sends single, virtual, nonhierarchical bus of signals from the block. An output port
named Bus appears. This Bus option enables you to change your model layout without
having to reroute Signal Builder block signals. You cannot use this option to create a
bus of nonvirtual signals.

For more information, see Defining Signal Output in the Simulink User's Guide

Signal Builder Block Now Shows the Currently Active Group

The Signal Builder block now shows the currently active group on its block mask.

signalbuilder Function Change

The signalbuilder function has a new command, 'annotategroup'. This command
enables the display of the current group name on the Signal Builder block mask.

Range-Checking Logic for Fixed-Point Data During Simulation Improved

The logic that Simulink uses to check whether design minimum and maximum values
are within the specified data type range is now consistent with the logic that it uses to
calculate best-precision scaling.

• Simulink now checks both real-world values and quantized values for a block
parameter, Simulink.Parameter object, or Simulink.Signal object against
design minimum and maximum values. Prior to R2011a, Simulink checked only real-
world values against design minimum and maximum values.

• When Simulink checks the design minimum and maximum values for a
Simulink.Signal object against the data type minimum and maximum values, it
obtains the data type range in one of the following ways.

1 If the data type for a Simulink.Signal object is set, Simulink uses the range
defined in the specification of that data type

14-7

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f15-109640.html#bsuz26l
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/signalbuilder.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/signalbuilder_cmd.html

R2011a

2 If the data type for a Simulink.Signal object is set to auto, Simulink uses the
range for the data type inferred from the initial value of the signal's fi object

Prior to R2011a, Simulink only used the data type range defined in the specification
of that data type.

• Simulink now checks the run-time parameter value of an S-function against the
design minimum and maximum values when the parameter is updated at run-time
and during compilation. Prior to R2011a, Simulink checked run-time parameter
values of an S-function against the design minimum and maximum only at run-time.

For more information about block parameter range checking, see Checking Parameter
Values.

Compatibility Considerations

• An error is generated if the quantized value of a block parameter,
Simulink.Parameter object, or Simulink.Signal object in your model is different
from the real-world value and if this difference causes the quantized value to lie
outside the design minimum and maximum range.

• An error is generated if the initial value of a Simulink.Signal object in your model
is a fi object and if this initial value is outside the range associated with that fi
object.

• An error is generated at compile time if the run-time parameter value of an S-function
in your model is outside the design minimum and maximum range.

Data Object Wizard Now Supports Boolean, Enumerated, and Structured
Data Types for Parameters

In this release, the Data Object Wizard is enhanced to suggest parameter objects for
variables with the following data types:

• Boolean
• Enumerations
• Structures

For information, see Working with Data Objects and Data Object Wizard.

14-8

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brdguka-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brdguka-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f14-90636.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f14-90636.html#bqgy1ty

 Simulink Data Management

Error Now Generated When Initialized Signal Objects Back Propagate to
Output Port of Ground Block

Prior to this release, Simulink generated an error when the output of a Ground block was
a signal object with an initial value, but did not do the same for such signal objects back
propagated to the output port of a Ground block. As of R2011a, Simulink generates an
error under both conditions.

No Longer Able to Set RTWInfo or CustomAttributes Property of Simulink
Data Objects

You can no longer set the RTWInfo or CustomAttributes property of a Simulink data
object from the MATLAB Command Window or a MATLAB script. Attempts to set these
properties generate an error.

Although you cannot set RTWInfo or CustomAttributes, you can still set subproperties
of RTWInfo and CustomAttributes.

Compatibility Considerations

Operations from the MATLAB Command Window or a MATLAB script, which set the
data object property RTWInfo or CustomAttributes, generate an error.

For example, a MATLAB script might set these properties by copying a data object as
shown below:

a = Simulink.Parameter;

b = Simulink.Parameter;

b.RTWInfo = a.RTWInfo;

b.RTWInfo.CustomAttributes = a.RTWInfo.CustomAttributes;

 .

 .

 .

To copy a data object, use the object's deepCopy method.

a = Simulink.Parameter;

b = a.deepCopy;

.

.

.

14-9

R2011a

Global Data Stores Now Treat Vector Signals as One or Two Dimensional

Simulink now uses the Dimensions attribute of a source signal object to determine
whether to register a global data store as a vector (1-D) or matrix (2-D). For example, if
the Dimensions attribute of a source signal object is set to [1 N] or [N 1], Simulink
registers the global data store as a matrix. Prior to R2011a, Simulink treated all global
data stores as vectors.

The following table lists possible signal object dimension settings with what Simulink
registers for a corresponding global data store:

Source Signal Object
Dimensions

Registered for Global Data Store

–1 Get dimensions from InitialValue and interpret vectors as
1-D

N Vector with N elements
[1 N] 1xN matrix
[N 1] Nx1 matrix

Compatibility Considerations

If you specify the dimensions of the source signal object for a global data store as [1 N]
or [N 1], Simulink now registers the data store as a matrix. Although this change has
no impact on numeric results of simulation or execution of generated code, the change
can affect the following:

• Propagation of dimensions (for example, signals might propagate as [1 N] or [N 1]
instead of N).

• Signal and state logging

• Vectors are logged as 2D matrices – [nTimeSteps width]
• 2-D matrices are logged as 3-D matrices – [M N nTimeSteps]

No Longer Able to Use Trigger Signals Defined as Enumerations

You can no longer use trigger signals that are defined as enumerations. A trigger signal
represents an external input that initiates execution of a triggered subsystem. Prior to
R2011a, Simulink supported enumerated trigger signals for simulation, but produced

14-10

 Simulink Data Management

an error during code generation. This change clarifies triggered subsystem modeling
semantics by making them consistent across simulation and code generation.

Compatibility Considerations

Use of enumerated trigger signals during simulation now generates an error. To
work around this change, compare enumeration values, as appropriate, and apply the
resulting Boolean or integer signal value as the subsystem trigger.

Conversions of Simulink.Parameter Object Structure Field Data to
Corresponding Bus Element Type Supported for double Only

If you specify the DataType field of a Simulink.Parameter object as a bus, you must
specify Value as a numeric structure. Prior to R2011a, Simulink would convert the data
types of all fields of that structure to the data types of corresponding bus elements. As of
R2011a, Simulink converts the data type of structure fields of type double only. If the
data type of a field of the structure does not match the data type of the corresponding bus
element and is not double, an error occurs.

This change does not affect the InitialValue field of Simulink.Signal objects. Data
types of fields of a numeric structure for an initial condition must match data types of
corresponding bus elements.

Compatibility Considerations

If the data type of a field of a numeric structure that you specify for
Simulink.Parameter does not match the data type of the corresponding bus element
and is not double, an error occurs. To correct the condition, set the data types of all
fields of the structure to match the data types of all bus elements or set them to type
double.

For more information, see Simulink.Parameter.

Simulink.CustomParameter and Simulink.CustomSignal Data Classes To
Be Deprecated in a Future Release

In a future release, data classes Simulink.CustomParameter and
Simulink.CustomSignal will no longer be supported because they are equivalent to
Simulink.Parameter and Simulink.Signal.

14-11

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.parameter.html

R2011a

Compatibility Considerations

If you use the data class Simulink.CustomParameter or Simulink.CustomSignal,
Simulink posts a warning that identifies the class and describes one or more techniques
for eliminating it. You can ignore these warnings in R2011a, but consider making the
described changes now because the classes will be removed in a future release.

Parts of Data Class Infrastructure No Longer Available

Simulink has been generating warnings for usage of the following data class
infrastructure features for several releases. As of R2011a, the features are no longer
supported.

• Custom storage classes not captured in the custom storage class registration file
(csc_registration) – warning displayed since R14SP2

• Built-in custom data class attributes BitFieldName and FileName
+IncludeDelimiter – warning displayed since R2008b

Instead of... Use...

BitFieldName StructName

FileName+IncludeDelimiter HeaderFile

• Initial value of MPT data objects inside mpt.CustomRTWInfoSignal – warning
displayed since R2006a

Compatibility Considerations

• When you use a removed feature, Simulink now generates an error.
• When loading a MAT-file that uses an unsupported feature, the load operation

suppresses the generated error such that it is not visible. In addition, MATLAB
silently deletes data that had been associated with the unsupported feature. To
prevent loss of data when loading a MAT-file, load and resave the file with R2010b or
earlier.

14-12

 Simulink Signal Management

Simulink Signal Management

Data Store Support for Bus Signals

The following blocks support the use of bus and array of buses signals with data stores:

• Data Store Memory
• Data Store Read
• Data Store Write

Benefits of using buses and arrays of buses with data stores include:

• Simplifying the model layout by associating multiple signals with a single data store
• Producing generated code that represents the data store data as structures that

reflect the bus hierarchy
• Writing to and reading from data stores without creating data copies, resulting in

more efficient data access

For details, see Using Data Stores with Buses and Arrays of Buses.

Compatibility Considerations

Pre-R2011a models that use data stores work in R2011a without any modifications.

To save a model that uses buses with data stores to a pre-R2011a version, you need to
restructure that model to not rely on using buses with data stores.

Accessing Bus and Matrix Elements in Data Stores

You can select specific bus or matrix elements to read from or write to a data store. To
do so, use the Element Selection pane of the Data Store Read block and the Element
Assignment pane of the Data Store Write block. Selecting bus or matrix elements offers
the following benefits:

• Reducing the number of blocks in the model. For example, you can eliminate a Data
Store Read and Bus Selector block pair or a Data Store Write and Bus Assignment
block pair for each specific bus element that you want to access.

• Faster simulation of models with large buses and arrays of buses.

14-13

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/datastorememory.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/datastoreread.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/datastorewrite.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bra7wyn.html#bsvjg67
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/datastoreread.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/datastorewrite.html

R2011a

See Accessing Data Stores with Simulink Blocks.

Array of Buses Support for Permute Dimensions, Probe, and Reshape
Blocks

The following blocks now support the use of an array of buses as an input signal:

• Permute Dimensions
• Probe
• Reshape

For details about arrays of buses, see Combining Buses into an Array of Buses.

Using the Bus Editor to Create Simulink.Parameter Objects and MATLAB
Structures

You can use the Bus Editor to:

• Define or edit a Simulink.Parameter object with a bus object for its data type. In
the Bus Editor, select the parameter and use one of these approaches:

• Select the File > Create/Edit a Simulink.Parameter object menu item.
• Click the Create/Edit a Simulink.Parameter object icon () from the toolbar.

You can then edit the Simulink.Parameter object in the MATLAB Editor.
• Invoke the Simulink.Bus.createMATLABStruct function for a bus object for which

you want to create a full MATLAB structure. In the Bus Editor, select the bus object
and use one of these approaches:

• Select the File > Create a MATLAB structure menu item.
• Click the Create a MATLAB structure icon () from the toolbar.

You can then edit the MATLAB structure in the MATLAB Editor.

14-14

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-146588.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/permutedimensions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/probe.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/reshape.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsocrb0.html

 Block Enhancements

Block Enhancements

Lookup Table, Lookup Table (2-D), and Lookup Table (n-D) Blocks
Replaced with Newer Versions in the Simulink Library

In R2011a, the following lookup table blocks have been replaced with newer versions,
which differ from the previous versions as follows:

Block Enhancements to the Previous Version Other Changes

Lookup
Table

• Default integer rounding mode changed from
Floor to Simplest

• Support for the following features:

• Specification of parameter data types different
from input or output signal types

• Reduced memory use and faster code execution
for nontunable breakpoints with even spacing

• Cubic-spline interpolation and extrapolation
• Table data with complex values
• Fixed-point data types with word lengths up to

128 bits
• Specification of data types for fraction and

intermediate results
• Specification of index search method
• Specification of diagnostic for out-of-range

inputs

• Block renamed as 1-D
Lookup Table

• Icon changed

Lookup
Table (2-D)

• Default integer rounding mode changed from
Floor to Simplest

• Support for the following features:

• Specification of parameter data types different
from input or output signal types

• Reduced memory use and faster code execution
for nontunable breakpoints with even spacing

• Cubic-spline interpolation and extrapolation

• Block renamed as 2-D
Lookup Table

• Icon changed

14-15

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/1dlookuptable.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/1dlookuptable.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/2dlookuptable.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/2dlookuptable.html

R2011a

Block Enhancements to the Previous Version Other Changes

• Table data with complex values
• Fixed-point data types with word lengths up to

128 bits
• Specification of data types for fraction and

intermediate results
• Specification of index search method
• Specification of diagnostic for out-of-range

inputs
• Check box for Require all inputs to have the

same data type now selected by default

Lookup
Table (n-D)

• Default integer rounding mode changed from
Floor to Simplest

• Block renamed as n-D
Lookup Table

• Icon changed

When you load models from earlier versions of Simulink that contain the Lookup Table,
Lookup Table (2-D), and Lookup Table (n-D) blocks, those versions of the blocks appear.
In R2011a, the new versions of the lookup table blocks appear only when you drag the
blocks from the Simulink Library Browser into new models.

When you use the add_block function to programmatically add the Lookup Table, Lookup
Table (2-D), or Lookup Table (n-D) blocks to a model, those versions of the blocks appear.
If you want to add the new versions of the blocks to your model, change the source block
path for add_block as follows:

Block Old Block Path New Block Path

Lookup Table simulink/Lookup Tables/Lookup

Table

simulink/Lookup Tables/1-D

Lookup Table

Lookup Table (2-D) simulink/Lookup Tables/Lookup

Table (2-D)

simulink/Lookup Tables/2-D

Lookup Table

Lookup Table (n-D) simulink/Lookup Tables/Lookup

Table (n-D)

simulink/Lookup Tables/n-D

Lookup Table

To upgrade your model to use new versions of the Lookup Table and Lookup Table (2-D)
blocks, follow these steps:

14-16

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/ndlookuptable.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/ndlookuptable.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/add_block.html

 Block Enhancements

Step Description Reason

1 Run the Simulink Model Advisor check
for Check model, local libraries,
and referenced models for known
upgrade issues requiring compile
time information.

Identify blocks that do not have
compatible settings with the new 1-D
Lookup Table and 2-D Lookup Table
blocks.

2 For each block that does not have
compatible settings:

• Decide how to address each warning.
• Adjust block parameters as needed.

Modify each Lookup Table or Lookup
Table (2-D) block to make them
compatible with the new versions.

3 Repeat steps 1 and 2 until you are
satisfied with the results of the Model
Advisor check.

Ensure that block replacement works
for the entire model.

4 Run the slupdate function on your
model.

Perform block replacement with the 1-
D Lookup Table and 2-D Lookup Table
blocks.

Note that after block replacement, the block names that appear in the model remain the
same. However, the block icons match the new ones for the 1-D Lookup Table and 2-D
Lookup Table blocks.

Compatibility Considerations

The Model Advisor check groups all Lookup Table and Lookup Table (2-D) blocks into
three categories:

• Blocks that have compatible settings with the new 1-D Lookup Table and 2-D Lookup
Table blocks

• Blocks that have incompatible settings with the new 1-D Lookup Table and 2-D
Lookup Table blocks

• Blocks that have repeated breakpoints

Blocks with Compatible Settings

When a block has compatible parameter settings with the new block, automatic block
replacement can occur without backward incompatibilities.

14-17

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html

R2011a

Parameter Settings in the New Block
After Automatic Block Replacement

Lookup Method in the Lookup
Table or Lookup Table (2-D) Block

Interpolation Extrapolation

Interpolation-

Extrapolation

Linear Linear

Interpolation-Use End

Values

Linear Clip

Use Input Below Flat Not applicable

Depending on breakpoint characteristics, the new block uses one of two index search
methods.

Breakpoint Characteristics in the Lookup Table or
Lookup Table (2-D) Block

Index Search Method in the New Block After
Automatic Block Replacement

Not evenly spaced Binary search

Evenly spaced and tunable
Evenly spaced and not tunable

A prompt appears, asking you to select Binary
search or Evenly spaced points.

The new block also adopts other parameter settings from the Lookup Table or Lookup
Table (2-D) block. For parameters that exist only in the new block, the following default
settings apply after block replacement:

Parameter in the New Block Default Setting After Block Replacement

Breakpoint data type Inherit: Same as corresponding input

Diagnostic for out-of-range input None

Blocks with Incompatible Settings

When a block has incompatible parameter settings with the new block, the Model
Advisor shows a warning and a recommended action, if applicable.

• If you perform the recommended action, you can avoid incompatibility during block
replacement.

• If you use automatic block replacement without performing the recommended action,
you might see numerical differences in your results.

14-18

 Block Enhancements

Incompatibility Warning Recommended Action What Happens for Automatic Block
Replacement

The Lookup Method is Use
Input Nearest or Use Input
Above. The new block does not
support these lookup methods.

Change the lookup method to
one of the following:

• Interpolation -

Extrapolation

• Interpolation - Use

End Values

• Use Input Below

The Lookup Method
is Interpolation -
Extrapolation, but the
input and output are not the
same floating-point type. The
new block supports linear
extrapolation only when all
inputs and outputs are the
same floating-point type.

Change the extrapolation
method or the port data types
of the block.

The Lookup Method changes
to Interpolation - Use End
Values.

In the new block, this setting
corresponds to:

• Interpolation set to Linear
• Extrapolation set to Clip

You also see a message that
explains possible numerical
differences.

The block uses small fixed-
point word lengths, so that
interpolation uses only one
rounding operation. The
new block uses two rounding
operations for interpolation.

None You see a message that explains
possible numerical differences.

Blocks with Repeated Breakpoints

When a block has repeated breakpoints, the Model Advisor recommends that you
change the breakpoint data and rerun the check. You cannot perform automatic block
replacement for blocks with repeated breakpoints.

Magnitude-Angle to Complex Block Supports CORDIC Algorithm and
Fixed-Point Data Types

The Magnitude-Angle to Complex block now supports the following parameters:

14-19

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/magnitudeangletocomplex.html

R2011a

The benefits of the new block parameters are as follows:

New Block Parameter Purpose Benefit

Approximation method Specify the type of
approximation the block
uses to compute output:
None or CORDIC.

Enables you to use a faster
method of computing block
output for fixed-point and
HDL applications.

Number of iterations For the CORDIC algorithm,
specify how many iterations
to use for computing block
output.

Enables you to adjust the
precision of your block
output.

14-20

 Block Enhancements

New Block Parameter Purpose Benefit

Scale output by
reciprocal of gain factor

For the CORDIC algorithm,
specify whether or not to
scale the real and imaginary
parts of the complex output.

Provides a more accurate
numerical result for the
CORDIC approximation.

This block now accepts and outputs fixed-point signals when you set Approximation
method to CORDIC.

Trigonometric Function Block Supports Complex Exponential Output

The Trigonometric Function block now supports complex exponential output: cos +
jsin. This function works with the CORDIC algorithm.

This block also accepts inputs with unsigned fixed-point data types when you use the
CORDIC approximation. In previous releases, only signed fixed-point inputs were
supported.

Shift Arithmetic Block Supports Specification of Bit Shift Values as Input
Signal

The Shift Arithmetic block now supports specification of bit shift values from an
input port. Previously, you could specify bit shift values only on the dialog box. This
enhancement enables you to change bit shift values without stopping a simulation.

The block now also supports the following functionality:

Enhancement Benefit

Specification of diagnostic for out-of-range
bit shift values

Flags out-of-range bit shift values during
simulation

Option to check for out-of-range bit shift
values in the generated code

Enables you to control the efficiency of the
generated code

The following parameter changes apply to the Shift Arithmetic block. For backward
compatibility, the old command-line parameters continue to work.

14-21

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/trigonometricfunction.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/shiftarithmetic.html

R2011a

Old Prompt on Block
Dialog Box

New Prompt on Block
Dialog Box

Old Command-Line
Parameter

New Command-Line
Parameter

Number of bits to
shift right

Bits to shift:
Number

nBitShiftRight BitShiftNumber

Number of places
by which binary
point shifts right

Binary points to
shift: Number

nBinPtShiftRight BinPtShiftNumber

The read-only BlockType property has also changed from SubSystem to ArithShift.

Multiple Lookup Table Blocks Enable Removal of Range-Checking Code

When the breakpoint input to a Prelookup, 1-D Lookup Table, 2-D Lookup Table, or n-
D Lookup Table block falls within the range of valid breakpoint values, you can disable
range checking in the generated code. By selecting Remove protection against out-
of-range input in generated code on the block dialog box, your code can be more
efficient.

14-22

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/prelookup.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/1dlookuptable.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/2dlookuptable.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/ndlookuptable.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/ndlookuptable.html

 Block Enhancements

Similarly, when the index input to an Interpolation Using Prelookup block falls within
the range of valid index values, you can disable range checking in the generated code. By
selecting Remove protection against out-of-range index in generated code on the
block dialog box, your code can be more efficient.

14-23

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/interpolationusingprelookup.html

R2011a

The Remove protection against out-of-range index in generated code check box
replaces the Check index in generated code check box from previous releases. When
you load models with the Interpolation Using Prelookup block from previous releases, the
following parameter mapping applies:

Parameter Setting from Previous
Releases

Parameter Setting for R2011a

Check index in generated
code is selected.

Remove protection against out-of-range index
in generated code is not selected.

14-24

 Block Enhancements

Parameter Setting from Previous
Releases

Parameter Setting for R2011a

Check index in generated
code is not selected.

Remove protection against out-of-range index
in generated code is selected.

For backward compatibility, the command-line parameter CheckIndexInCode continues
to work.

Enhanced Dialog Layout for the Prelookup and Interpolation Using
Prelookup Blocks

In R2011a, the dialog boxes for the Prelookup and Interpolation Using Prelookup blocks
consolidate parameters related to data type attributes on a single tab named Data
Types. This enhancement enables you to specify data type attributes more quickly on
the block dialog box.

• For the Prelookup block, you can now specify breakpoint, index, and fraction
attributes on a single tab.

• For the Interpolation Using Prelookup block, you can now specify table, intermediate
results, and output attributes on a single tab.

14-25

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/prelookup.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/interpolationusingprelookup.html

R2011a

Product of Elements Block Uses a Single Algorithm for Element-Wise
Complex Division

In previous releases, the Product of Elements block used two different algorithms for
handling element-wise complex division. For example, for a matrix input with four
elements (u1, u2, u3, and u4), the following behavior would apply:

• For inputs with built-in integer and floating-point data types, the order of operations
was 1/(u1*u2*u3*u4).

• For inputs with fixed-point data types, the order of operations was ((((1/u1)/u2)/
u3)/u4).

Starting in R2011a, the Product of Elements block uses a single algorithm for handling
element-wise complex division. For inputs of integer, floating-point, or fixed-point type,
the order of operations is always (((((1/u1)/u2)/u3)/u4)…/uN).

14-26

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/productofelements.html

 Block Enhancements

Sign Block Supports Complex Floating-Point Inputs

The Sign block now supports complex inputs of type double or single. The block output
matches the MATLAB result for complex floating-point inputs.

When the input u is a complex scalar, the block output is:
sign(u) = u./ abs(u)

When an element of a vector or matrix input is complex, the block uses the same formula
that applies to scalar input.

MATLAB Fcn Block Renamed to Interpreted MATLAB Function Block

In R2011a, the MATLAB Fcn block has been renamed to Interpreted MATLAB Function
block. The icon has also changed to match the new block name. However, all functionality
and block parameters remain the same. The read-only BlockType property is also
unchanged.

Existing scripts that use the add_block function to programmatically add the MATLAB
Fcn block to models do not require any changes.

When you load existing models that contain the MATLAB Fcn block, the block name that
appears in the model remains unchanged. However, the block icon matches the new one
for the Interpreted MATLAB Function block.

Environment Controller Block Port Renamed from RTW to Coder

In R2011a, the Environment Controller block has renamed the RTW port to Coder. This
enhancement better reflects the purpose of that input port, which designates signals to
pass through the block when code generation occurs for a model.

Block Parameters on the State Attributes Tab Renamed

In R2011a, the block parameters Real-Time Workshop storage class and Real-
Time Workshop storage type qualifier have been renamed to Code generation
storage class and Code generation storage type qualifier, respectively. These two
parameters appear on the State Attributes tab of the following block dialog boxes:

• Discrete Filter

14-27

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/sign.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/interpretedmatlabfunction.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/add_block.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/environmentcontroller.html

R2011a

• Discrete PID Controller
• Discrete PID Controller (2DOF)
• Discrete State-Space
• Discrete Transfer Fcn
• Discrete Zero-Pole
• Discrete-Time Integrator
• Memory
• Unit Delay

Block Parameters and Values Renamed for Lookup Table Blocks

In R2011a, the Action for out-of-range input parameter has been renamed as
Diagnostic for out-of-range input for the following blocks:

• Direct Lookup Table (n-D)
• Interpolation Using Prelookup
• n-D Lookup Table
• Prelookup

Also, the Process out-of-range input parameter has been renamed as Extrapolation
method for the Prelookup block.

For lookup table blocks that provide Interpolation method or Extrapolation method
parameters, the following changes apply:

Parameter Value from Previous Releases Parameter Value in R2011a

None - Flat Flat

None - Clip Clip

Performance Improvement for Single-Precision Computations of
Elementary Math Operations

In R2011a, single-precision computations for elementary math operations are faster. This
enhancement applies to the following simulation modes:

14-28

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/directlookuptablend.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/interpolationusingprelookup.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/ndlookuptable.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/prelookup.html

 Block Enhancements

• Normal
• Accelerator

Dead Zone Block Expands the Region of Zero Output

In R2011a, the Dead Zone block expands the region of zero output, or the dead zone, to
include inputs (U) that equal the lower limit (LL) or upper limit (UL):

Input Output

U >= LL and U <= UL Zero
U > UL U – UL
U < LL U – LL

In previous releases, the dead zone excluded inputs that equal the lower or upper limit.

Enhanced PID Controller Blocks Display Compensator Formula in Block
Dialog Box

The PID Controller and PID Controller (2 DOF) blocks now display the current
compensator formula in the block dialog box. This display reflects the current settings for
controller type, controller form, and time domain.

Ground Block Always Has Constant Sample Time

In R2011a, the sample time of the Ground block is now constant (inf) regardless of
the setting for Inline parameters in the Configuration Parameters dialog box.

Compatibility Considerations

Previously, if Inline parameters was off, the sample time of the Ground block
depended on sample-time propagation. Now, the following conditions hold true:

• Function-call subsystem blocks that have an unconnected function-call port now have
the correct sample time of constant (inf) regardless of the setting for Inline
parameters.

14-29

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/deadzone.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/pidcontroller.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/pidcontroller2dof.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/ground.html

R2011a

• Function-call subsystem blocks that have a function-call port connected to a Ground
block now have the correct sample time of constant (inf) regardless of the setting
for Inline parameters.

• Function-call subsystem blocks that have the Sample time type set to periodic
now correctly error out when they are connected to a Ground block or unconnected.

New Function-Call Feedback Latch Block

The Function-Call Feedback Latch block allows you to break a feedback loop involving
data signals between function-call signals. You can use this block for two specific
scenarios:

• If a loop involves parent and child function-call blocks (that is, the initiator of the
child function-call block is inside the parent function-call block), then place this block
on the feedback signal from the child to the parent. You can thus ensure that the
value of the signal does not change during execution of the child.

• If a loop involves function-call blocks connected to branches of the same function-call
signal, then this block latches the signal at the input of the destination function-call
block, and thereby allows it to execute prior to the source function-call block.

14-30

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/functioncallfeedbacklatch.html

 Block Enhancements

In either case, the latching results in the destination block reading a delayed signal from
the previous execution of the source function-call block.

Outport Driving Merge Block Does Not Require IC in Simplified
Initializaton Mode

If an Outport block of a conditionally executed subsystem directly drives a Merge block,
then the Outport block no longer requires the specification of an Initial Condition (IC)
in simplified initialization mode. Simulink still expects the Merge block to specify an
IC. This enhancement applies only when the Outport and Merge blocks are in the same
model.

Discrete Filter, Discrete FIR Filter, and Discrete Transfer Fcn Blocks Now
Have Input Processing Parameter

The Discrete Filter, Discrete FIR Filter, and Discrete Transfer Fcn blocks now have
an Input processing parameter. This parameter enables you to specify whether the
block performs sample- or frame-based processing on the input. To perform frame-based
processing, you must have a DSP System Toolbox license.

14-31

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretefilter.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretefirfilter.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretetransferfcn.html

R2011a

Model Blocks Can Now Use the GetSet Custom Storage Class

The GetSet custom storage class can now be used for the inports and outports of Model
blocks. To assign a GetSet custom storage class to the inport or outport of a referenced
model block, use one of the following methods.

1 Assign the GetSet custom storage class to the root-level inport or outport of the
referenced model.

2 Assign the GetSet custom storage class to scalar signals entering an inport of the
referenced model block in the parent model, provided one of the following conditions
is met.

a The referenced model uses function prototype control to specify that the inport
should be passed by value instead of being passed by pointer to the Model block's
step function.

b The inport to which the GetSet custom storage class is assigned should be
passed by value.

3 Assign the GetSet custom storage class to a scalar signal leaving one of the outports
of the referenced model block in the parent model. In this case, the referenced
model must use function prototype control to specify that the outport should be the
returned value of the function.

14-32

 User Interface Enhancements

User Interface Enhancements

Model Explorer: Hiding the Group Column

By default, the property column that you use for grouping (the group column) appears in
the property table. That property also appears in the top row for each group.

To hide the group column, use one of the following approaches:

• From the View menu, clear the Show Group Column check box.
• Within the property table, right-click a column heading and clear the Show Group

Column check box.

Simulation Data Inspector Enhancements

Multiple Plots in a View

The Simulation Data Inspector tool now supports the configuration of multiple plots into
one view. On the Inspect Signals pane, on the View toolbar, select Show Details to
display the View Details table.

14-33

R2011a

You can create multiple views by clicking the New view from current button. In each
view, you can:

• Modify the number of plots by clicking the Layout column to display the plot matrix.

14-34

 User Interface Enhancements

• Name, save, and reload the view using the corresponding buttons.
• Replace signal data for a run with the corresponding signal data of another run by

clicking the Replace runs button.

For more information, see Visual Inspection of Signal Data in the Simulation Data
Inspector Tool.

Display Run Properties

In R2011a, you can view the properties of a run. In the Signal Browser table, right-click
a run name to view a list of options. To open the Run Properties dialog box, from the
options list, select Properties.

New Toolbar Icons

The Simulation Data Inspector toolbar includes a new icon for zooming out a section

of a plot. The previous zoom out icon now performs a fit to view operation, which
enlarges a plot to fill the graph. To perform either operation, select the icon, and click on
a plot.

Model Advisor

In R2011a, the Model Advisor tool now includes easier control of the By Product and
By Task folders. In the Model Advisor, select View > Show By Product Folder or
Show By Task Folder to show or hide each folder. These settings are persistent across
MATLAB sessions.

14-35

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsjs0w9.html#bso7lpv
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsjs0w9.html#bso7lpv

R2011a

In the By Task folder, there are two new subfolders:

• Modeling and Simulation
• Code Generation Efficiency

For more information on the Model Advisor GUI, see Consulting the Model Advisor.

Configuration Parameters Dialog Box Changes

The Configuration Parameters dialog box layout is improved to better support your
workflows. The Optimization pane is reorganized into three panes:

• General
• Signals and Parameters
• Stateflow

These panes make it easier to find parameters.

In R2011a, all tree nodes are collapsed by default. For details, see Configuration
Parameters Dialog Box.

14-36

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141979.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq74bj9.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq74bj9.html

 S-Functions

S-Functions

S-Functions Generated with legacy_code function and singleCPPMexFile
S-Function Option Must Be Regenerated

Due to an infrastructure change, if you have generated an S-function with a call to
legacy_code that defines the S-function option singleCPPMexFile, you must regenerate
the S-function to use it with this release of Simulink.

For more information, see the description of legacy_code and Integrating Existing C
Functions into Simulink Models with the Legacy Code Tool.

Compatibility Considerations

If you have generated an S-function with a call to legacy_code that defines the S-function
option singleCPPMexFile, regenerate the S-function to use it with this release of
Simulink.

14-37

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/legacy_code.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/legacy_code.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/bq4g1es-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/bq4g1es-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/legacy_code.html

R2010bSP2
Version: 7.6.2

Bug Fixes

R2010bSP1
Version: 7.6.1

Bug Fixes

R2010b
Version: 7.6

New Features

Bug Fixes

Compatibility Considerations

R2010b

Simulation Performance

Elimination of Regenerating Code for Rebuilds

For models that contain Model Reference blocks and that have not changed between
Rapid Acceleration simulations, the rebuild process is more efficient.

Previously, if an Accelerator simulation or a Code Generation ERT/GRT was performed
between two Rapid Acceleration simulations, then Simulink partially built the code a
second time during the second Rapid Acceleration simulation.

Now, providing the model checksum remains constant, Simulink does not generate code
for the second Rapid Accelerator simulation.

17-2

 Component-Based Modeling

Component-Based Modeling

Model Workspace Is Read-Only During Compilation

During the compilation of a model, Simulink enforces that the model workspace is read-
only, by issuing an error if there is an attempt to change a model workspace variable
during compilation. This enforcement of a read-only workspace prevents the simulation
from failing or producing incorrect results due to changes to the model workspace.

Compatibility Considerations

In previous releases, you could change model workspace variables when compiling a
model (for example, this could occur when compiling referenced models). Rewrite any
code that changes model workspace variables during compilation of a model.

Support for Multiple Normal Mode Instances of a Referenced Model

You can use Normal mode for multiple instances of a referenced model. Prior to R2010b,
a model with model references could use Normal mode for at most one instance of each
referenced model.

A referenced model must be in Normal mode for you to be able to use several important
Simulink and Stateflow features, including linearization and model coverage analysis.
Using Normal mode also can make editing and testing models more efficient.

In the sldemo_mdlref_depgraph demo, see the “Interacting with the Dependency
Viewer in Instance View” section for an example of how to use multiple Normal mode
instances of a referenced model. For additional information about using multiple Normal
mode instances of a referenced model, see Using Normal Mode for Multiple Instances of
Referenced Models.

Compatibility Considerations

The Save As feature preserves the Simulation mode setting of the Model block as
much as possible.

If the both of the following conditions are true, then the saved model does not simulate:

• The R2010b model has multiple Normal mode instances of a referenced model.

17-3

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsp24op-1.html#bsp24op-10
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsp24op-1.html#bsp24op-10

R2010b

• You use the Save As feature to save the model to a release earlier than R2010b that
supports model reference Normal mode.

In this situation, the saved model does not simulate because only one instance of a
referenced model could be in Normal mode in that earlier release.

Also, in releases before R2010b, you could select the Refresh Model Blocks menu item
directly from the Edit menu in the Model Editor. In R2010b, access the Refresh Model
Blocks menu item from the Edit > Model Blocks menu item.

New Variant Subsystem Block for Managing Subsystem Design
Alternatives

A Variant Subsystem block provides multiple implementations for a subsystem where
only one implementation is active during simulation. You can programmatically swap
implementations without modifying the model. When the model is compiled, the
Simulink engine chooses the active subsystem from a selection of subsystems. The active
subsystem is determined by the values of the variant control variables and variant
objects, which you define in the base workspace. By modifying the values of the variant
control variables, you can easily specify which subsystem runs in your simulation.

For more information, see Setting Up Variant Subsystems. If you use the Model Advisor
to check a system containing a variant subsystem, see Model Advisor Limitations, for
more information.

Support for Bus and Enumerated Data Types on Masks

For the Masked Parameters dialog box, you can now create data type parameters that
support the specification of bus or enumerated (enum) data types.

To create a data type parameter that supports bus data types, in the Mask Editor, select
the Parameters pane.

For information about how to specify bus and enumerated data type parameters, see
Data Type Control.

sl_convert_to_model_reference Function Removed

The sl_convert_to_model_reference function is obsolete and has been removed
from the Simulink software.

17-4

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/variantsubsystem.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bso3yvt.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141979.html#bsmdist
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/f8-21619.html#bsnkeoq-1

 Component-Based Modeling

To convert an atomic subsystem to a model reference, right-click the atomic
subsystem and select the Convert to Model Block menu item, or use the
Simulink.SubSystem.convertToModelReference function. See Atomic Subsystem and
Converting a Subsystem to a Referenced Model for more information.

Verbose Accelerator Builds Parameter Applies to Model Reference SIM
Target Builds in All Cases

For referenced models, the Configuration Parameter > Optimization > Verbose
accelerator build parameter is no longer overridden by the Configuration
Parameter > Real-Time Workshop > Debug > Verbose build parameter setting
when building model reference SIM targets.

17-5

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.subsystem.converttomodelreference.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/atomicsubsystem.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141943.html

R2010b

Embedded MATLAB Function Blocks

Specialization of Embedded MATLAB Function Blocks in Simulink Libraries

You can now create library instances of the same Embedded MATLAB Function block
with distinct properties, including:

• Data type, size, complexity, sampling mode, range, and initial value
• Block sample time
• Fixed-point data type override mode
• Resolution to different MATLAB files on the path

With this capability, you can create custom block libraries using Embedded MATLAB
Function blocks. For more information, see Creating Custom Block Libraries with
MATLAB Function Blocks.

Support for Creation and Processing of Arrays of Buses

The Embedded MATLAB Function block now supports arrays of buses.

Ability to Include MATLAB Code as Comments in Generated C Code

You can now select to include MATLAB source code as comments in code generated for
an Embedded MATLAB Function block. This capability improves traceability between
generated code and the original source code.

Note: This option requires a Real-Time Workshop® license.

For more information, see MATLAB source code as comments in the Real-Time
Workshop documentation.

Data Properties Dialog Box Enhancements

In R2010b, the following changes to the Data properties dialog box apply:

17-6

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bso5xd2.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bso5xd2.html
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/bq259hv-1.html#bskz2tm-1

 Embedded MATLAB Function Blocks

Parameters Location in R2010a Location in R2010b Benefit of Location
Change

Limit range

• Minimum
• Maximum

Value Attributes
tab

General tab Consistent with
blocks in the
Simulink library
that specify these
parameters on the
same tab as the data
type.

Save final value to
base workspace

Value Attributes
tab

Description tab Consolidates
parameters
related to the data
description.

Parameter Being Removed in Future Release

The Save final value to base workspace will be removed in a future release.

17-7

R2010b

Simulink Data Management

Enhanced Support for Bus Objects as Data Types

The following blocks have added support for specifying a bus object as a data type:

• Constant
• Signal Specification

For the Constant block, if you use a bus object as a data type, you can set the Constant
value to be one of these values:

• A full MATLAB structure corresponding to the bus object
• 0 to indicate a structure corresponding to the ground value of the bus object

See the Constant block reference page for an example that shows how to use a structure
to simplify a model.

The following blocks and Simulink classes now use a consistent Data type parameter
option, Bus: <object name>, for specifying a bus object as a data type:

• Constant block
• Bus Creator block
• Inport block
• Outport block
• Signal Specification block
• Simulink.BusElement class
• Simulink.Parameter class
• Simulink.Signal class

Compatibility Considerations

The interface for specifying a bus object as a data type is now consistent for the blocks
that support that capability. Making the interface consistent involves removing
some block parameters that existed in releases prior to R2010b. The following table
summarizes the changes.

17-8

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/constant.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/signalspecification.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/constant.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/constant.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/buscreator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/inport.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/outport.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/signalspecification.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.parameter.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.signal.html

 Simulink Data Management

Block Removed Pre-R2010b
Parameters

Replacement R2010b
Parameter

Bus Creator Bus object

Specify properties via
bus object

Output data type

Inport Specify properties via
bus object

Bus object for validating
input bus

Data type

Outport Specify properties via
bus object

Bus object for validating
input bus

Data type

Enhancements to Simulink.NumericType Class

The Simulink.NumericType class now has the following methods:

• isboolean
• isdouble
• isfixed
• isfloat
• isscalingbinarypoint
• isscalingslopebias
• isscalingunspecified
• issingle

Importing Signal Data Sets into the Signal Builder Block

The Signal Builder block can now accept existing signal data sets. In previous releases,
you had to enter existing signal data one by one in the Signal Builder dialog box or with
the signalbuilder function.

17-9

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.numerictype.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/signalbuilder.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/signalbuilder.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/signalbuilder.html

R2010b

In the Signal Builder block dialog box, you can now use the File > Import from File to
import files that contain data sets. These data sets can contain test data that you have
collected, or you can manually create these files. The block accepts the appropriately
formatted file types:

• Excel (.xls, .xlsx)
• Comma-separated value (CSV) text files (.csv)
• MAT-files (.mat)

For further information, see Working with Signal Groups in the Simulink User's Guide.

signalbuilder Function Changes

The signalbuilder function has improved functionality:

To... Use...

Add new groups to the Signal Builder
block.

'append'

Append signals to existing signal groups in
the Signal Builder block.

'appendsignal'

Make visible signals that are hidden in the
Signal Builder block.

'showsignal'

Make invisible signals that are visible in
the Signal Builder block.

'hidesignal'

From File Block Enhancements

The From File block includes the following new features:

• You can specify the method that the From File block uses to handle situations where
there is not an exact match between a Simulink sample time hit and a time in the
data file that the From File block reads.

• In previous releases, the From File block automatically applied a linear
interpolation and extrapolation method.

• In R2010b, you can set the interpolation method independently for each of these
situations:

17-10

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f15-109640.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/signalbuilder.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/fromfile.html

 Simulink Data Management

• Data extrapolation before the first data point
• Data interpolation within the data time range
• Data extrapolation after the last data point

• The choices for the interpolation methods are (as applicable):

• Linear interpolation
• Zero-order hold
• Ground value

• The From File block now can read signal data that has an enumerated (enum) data
type, in addition to previously supported data types.

Finding Variables Used by a Model or Block

You can get a list of variables that a model or block uses.

In the Simulink Editor, right-click a block, subsystem, or the canvas and select the Find
Referenced Variables menu item.

Simulink returns the results in the Model Explorer.

As an alternative, you can use the Model Explorer interface directly to find variables
used by a model or block, as described in Finding Variables That Are Used by a Model or
Block.

enumeration Function Replaced With MATLAB Equivalent

Starting with R2010b, when you invoke the enumeration function, you will be invoking
a MATLAB equivalent of the Simulink function with the same name available in earlier
releases.

See the description of the new MATLAB enumeration function introduced with new
support for enumeration classes.

Programmatic Creation of Enumerations

The new Simulink.defineIntEnumType function provides a way to programmatically
import enumerations defined externally—for example, in a data dictionary—to MATLAB.
The function creates and saves a enumeration class definition file on the MATLAB path.

17-11

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bso5b65.html#bso5b9r
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bso5b65.html#bso5b9r
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/enumeration.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/enumeration.html
http://www.mathworks.com/help/releases/R2012a/techdoc/matlab_oop/br4imrp.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.defineintenumtype.html

R2010b

For more information, see the description of Simulink.defineIntEnumType and
Enumerations and Modeling.

Simulink.Signal and Simulink.Parameter Objects Now Obey Model Data
Type Override Settings

Simulink.Signal and Simulink.Parameter objects now honor model-level data
type override settings. This capability allows you to share fixed-point models that use
Simulink.Signal or Simulink.Parameter objects with users who do not have a
Simulink Fixed Point™ license.

To simulate a model without using Simulink Fixed Point, use the Fixed-Point Tool to
set the model-level Data type override setting to Double or Single and the Data
type override applies to parameter to All numeric types. If you use fi objects
or embedded numeric data types in your model, set the fipref DataTypeOverride
property to TrueDoubles or TrueSingles and the DataTypeOverrideAppliesTo
property to All numeric types to match the model-level settings. For more
information, see fxptdlg in the Simulink documentation.

17-12

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.defineintenumtype.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brsaydz-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/fxptdlg.html

 Simulink File Management

Simulink File Management

Autosave Upgrade Backup

New Autosave option to backup Simulink models when upgrading to a newer release.
Automatically saving a backup copy can be useful for recovering the original file in case
of accidental overwriting with a newer release.

You can set this Autosave option in the Simulink Preferences Window. See Autosave in
the Simulink Graphical User Interface documentation.

Model Dependencies Tools

Enhanced file dependency analysis has the following new features:

• Find workspace variables that are required by your design but not defined by a file in
the manifest

• Store code analysis warnings in the manifest
• Validate manifests before exporting to a ZIP file, to check for missing files and data
• Compare manifests with ZIP files and folders

For details see Model Dependencies.

17-13

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/brh72r5-1.html#brtjhn8
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bq2ifjj-1.html

R2010b

Simulink Signal Management

Arrays of Buses

You can now use arrays of buses to represent structured data compactly, eliminating
the need to include multiple copies of the same buses. You can iteratively process each
element of the bus array, for example, by using a For Each subsystem.

The following blocks now support arrays of buses:

• Virtual blocks (see Virtual Blocks)
• These bus-related blocks:

• Bus Assignment
• Bus Creator
• Bus Selector

• These nonvirtual blocks:

• Merge
• Multiport Switch
• Rate Transition
• Switch
• Zero-Order Hold

• Assignment
• MATLAB Function (formally called Embedded MATLAB Function)
• Matrix Concatenate
• Selector
• Vector Concatenate
• Width
• Two-Way Connection (a Simscape block)

Create an array of buses with either a Vector Concatenate or Matrix Concatenate block.
The input bus signals to these blocks must be nonvirtual and of the same type (that is,
have the same names, hierarchies, and attributes for the leaf elements).

17-14

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f13-88939.html#f13-82250
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/busassignment.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/buscreator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/busselector.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/merge.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/multiportswitch.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/ratetransition.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/switch.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/zeroorderhold.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/assignment.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/matlabfunction.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/matrixconcatenate.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/selector.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/vectorconcatenate.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/width.html
http://www.mathworks.com/help/releases/R2012a/toolbox/physmod/simscape/ref/twowayconnection.html

 Simulink Signal Management

The generated code creates arrays of C structures that represent arrays of buses. You can
use the Legacy Code Tool to integrate legacy C code that uses arrays of structures.

In an Embedded MATLAB® Function block, you can process arrays of bus signals using
regular MATLAB syntax.

The use of arrays of buses does not support the following:

• Virtual buses
• Data loading or logging
• Stateflow action language

For details about using arrays of buses, see Combining Buses into an Array of Buses.

Compatibility Considerations

If you specify a bus object as the data type for a root Inport or Outport block, the
Dimensions parameter is enabled, to allow you to specify dimensions other than 1 or -1
for an array of buses.

In previous releases, the Dimensions parameter was ignored if you specified a bus
object as the data type for a root Inport or Outport block. If you specified a dimension
other than 1 or -1, then do one of the following, depending on whether you want to use
an array of buses or you want to output as a virtual bus:

• To use an array of buses:

• In the Signal Attributes pane of the block parameters dialog box for a root Inport
or Outport block, select the Output as nonvirtual bus option.

• In the Configuration Parameters > Diagnostics > Connectivity>> pane, set
Mux blocks used to create bus signals to error.

• To output as a virtual bus, set the Dimensions parameter to 1 or -1.

Loading Bus Data to Root Input Ports

You can now use MATLAB structures and timeseries objects when defining root-level
input port signals. Using a structure of timeseries objects for bus signals simplifies
loading bus data to root input ports.

17-15

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsocrb0.html

R2010b

To specify the input, use the Configuration Parameters > Data Import/Export >
Input parameter. For more information, see Importing MATLAB timeseries Data and
Importing Structures of MATLAB timeseries Objects for Bus Signals to a Root-Level
Input Port.

17-16

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsuwm6b.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsuwngp.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsuwngp.html

 Block Enhancements

Block Enhancements

Prelookup Block Supports Dynamic Breakpoint Data

The Prelookup block now supports specification of breakpoint data from an input port.
Previously, you could specify breakpoint data only on the dialog box.

This enhancement enables you to change breakpoint data without stopping a simulation.
For example, you can incorporate new breakpoint data if the physical system you are
simulating changes.

Interpolation Using Prelookup Block Supports Dynamic Table Data

The Interpolation Using Prelookup block now supports specification of table data from an
input port. Previously, you could specify table data only on the dialog box.

This enhancement enables you to change table data without stopping a simulation. For
example, you can incorporate new table data if the physical system you are simulating
changes.

Multiport Switch Block Supports Specification of Default Case for Out-of-
Range Control Input

When the control input of the Multiport Switch block does not match any data port
indices, you can specify the last data port as the default or use an additional data port.
This enhancement enables you to avoid simulation errors and undefined behavior in the
generated code.

Switch Block Icon Shows Criteria and Threshold Values

This enhancement helps you identify the Criteria for passing first input and
Threshold values without having to open the Switch block dialog box.

17-17

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/prelookup.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/interpolationusingprelookup.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/multiportswitch.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/switch.html

R2010b

Block Icon Block Dialog Box

Trigonometric Function Block Supports Expanded Input Range for CORDIC
Algorithm

The Trigonometric Function block now supports an input range of [–2π, 2π) radians when
you set Function to sin, cos, or sincos and set Approximation method to CORDIC.
Previously, the input range allowed was [0, 2π) radians.

This enhancement enables you to use a wider range of input values that are natural for
problems that involve trigonometric calculations.

Repeating Sequence Stair Block Supports Enumerated Data Types

The Repeating Sequence Stair block now supports enumerated data types. For more
information, see Enumerations and Modeling in the Simulink User's Guide.

17-18

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/trigonometricfunction.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/repeatingsequencestair.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brsaydz-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html

 Block Enhancements

Abs Block Supports Specification of Minimum Output Value

The Abs block now supports specification of an Output minimum parameter. This
enhancement enables you to specify both minimum and maximum values for block
output. In previous releases, you could specify the maximum output value but not the
minimum, which Simulink assumed to be 0 by default.

Saturation Block Supports Logging of Minimum and Maximum Values for
the Fixed-Point Tool

When you set Fixed-point instrumentation mode to Minimums, maximums and
overflows in the Fixed-Point Tool, the Saturation block logs minimum and maximum
values. In previous releases, this block did not support min/max logging.

Vector Concatenate Block Now Appears in the Commonly Used and
Signal Routing Libraries

In the Simulink Library Browser, the Vector Concatenate block now appears in the
Commonly Used and Signal Routing libraries. This block continues to appear in the Math
Operations library.

Model Discretizer Support for Second-Order Integrator Block

You can now discretize a model containing a Second-Order Integrator block using
the Model Discretizer. Based on your block parameter settings, the tool replaces the
continuous Second-Order Integrator block with one of the four discrete subsystems in the
z-domain.

Integer Delay and Unit Delay Blocks Now Have Input Processing
Parameter

The Integer Delay and Unit Delay blocks now have an Input processing parameter.
This parameter enables you to specify whether the block performs sample- or frame-
based processing on the input. To perform frame-based processing, you must have a
Signal Processing Blockset™ license.

17-19

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/abs.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/saturation.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/secondorderintegrator.html

R2010b

Compatibility Considerations

Beginning this release, MathWorks is changing how our products control frame-based
processing. Previously, signals themselves were sample or frame based. Our blocks
inherited that information from the signal, and processed the input accordingly, either
as individual samples or as frames of data. Beginning this release, signals are no longer
responsible for carrying information about their frame status. The blocks themselves now
control whether they perform sample- or frame-based processing on the input.

Some blocks can do only one type of processing and thus require no changes. Other blocks
can do both sample- and frame-based processing and thus require a new parameter. The
Integer Delay and Unit Delay blocks fall into the latter category.

If you have any Integer Delay or Unit Delay blocks in an R2010a or earlier model, those
blocks will continue to produce the same results in R2010b. When you open an existing
model with an Integer Delay or Unit Delay block in R2010b, the Input processing
parameter of those blocks will be set to Inherited. Your models will continue to run
in this mode, but it is recommended that you run the slupdate function to set the Input
processing parameter to the equivalent non-inherited mode. The non-inherited modes
are Elements as channels (sample based) and Columns as channels (frame
based).

If you do not run the slupdate function on your model before the Inherited option
is removed, any Input processing parameter set to Inherited on an Integer Delay
or Unit Delay block will be set automatically to Elements as channels (sample
based).

Data Store Read Block Sample Time Default Changed to -1

In R2010b, the Data Store Read block uses a default value of -1 for the Sample time,
for consistency with the Data Store Write block and most other blocks. In previous
releases, the default sample time was 0.

Compatibility Considerations

The Sample time default for the Data Store Read block has changed from 0 in previous
releases to -1 in R2010b.

17-20

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/datastoreread.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/datastorewrite.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/datastoreread.html

 Block Enhancements

Support of Frame-Based Signals Being Removed From the Bias Block

Starting in R2010b, frame-based signal support is being removed from the Bias block.
In a future release, the block will no longer support frame-based processing. To offset
a frame-based signal in R2010b or later releases, you can use the Signal Processing
Blockset Array-Vector Add block.

Compatibility Considerations

If you have any R2010a or earlier models that use the Bias block to offset a frame-based
signal, you can use the slupdate function to upgrade your model. For each instance where
you use a Bias block with a frame-based input signal, the slupdate function replaces
the Bias block with an Array-Vector Add block.

Relaxation of Limitations for Function-Call Split Block

Two limitations of the Function-Call Split block have been relaxed for R2010b.

• Previously, the direct children of a branched function-call had to have periodic or
asynchronous sample time. Now the direct children can also be triggered. Therefore,
the branched function-call can trigger a Stateflow chart directly.

• Previously, if a branched function-call initiator was a Stateflow event, then the
Stateflow function-call output event had to be bound to a particular state. Now the
event can be bound or unbound to a state when invoking a branched function-call.

17-21

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/bias.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html

R2010b

User Interface Enhancements

Model Explorer and Command-Line Support for Saving and Loading
Configuration Sets

Previously, you could save and load a configuration set from the command line
only, requiring many steps. Now you can save and load a configuration set
using the Model Explorer. You can also save or load the active configuration
set using one function, the Simulink.BlockDiagram.saveActiveConfigSet or
Simulink.BlockDiagram.loadActiveConfigSet function.

For details, see the following sections in the Simulink User's Guide:

• Save a Configuration Set
• Load a Saved Configuration Set

Model Explorer: Grouping by a Property

In the Contents pane, you can group data based on a property values. For example,
you can group by the BlockType property by right-clicking that column heading and
selecting the Group by This Column menu item. The result looks similar to this:

For details, see Grouping by a Property.

17-22

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.blockdiagram.saveactiveconfigset.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.blockdiagram.loadactiveconfigset.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f11-35796.html#bsgkoao-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f11-35796.html#bsgkoao-2
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsow6lm.html#bso3zmq

 User Interface Enhancements

Model Explorer: Filtering Contents

In the Contents pane, you can specify a text string that the Model Explorer uses to filter
the displayed objects. Use the Filter Contents text box at the top of the Contents pane
to specify the text for filtering.

For details, see Filtering Contents.

Model Explorer: Finding Variables That Are Used by a Model or Block

In the Model Explorer, you can get a list of variables that a model or block uses. For
example, one way to get that list of variables is:

1 In the Contents pane, right-click the block for which you want to find what
variables it uses.

2 Select the Find Referenced Variables menu item.

You can also use the following approaches to find variables that are used by a model or
block:

• In the Model Explorer, in the Model Hierarchy pane, right-click a model or block
and select the Find Referenced Variables menu item.

• In the Model Explorer, in the search bar, use the for Referenced Variables
search type option.

17-23

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bso34oh.html#bso343z

R2010b

• In the Model Editor, right-click a block, subsystem, or the canvas and select the Find
Referenced Variables option.

For details, see Finding Variables That Are Used by a Model or Block.

Model Explorer: Finding Blocks That Use a Variable

You can use the Model Explorer to get a list of blocks that use a workspace variable. One
way to get that list of blocks is to right-click a variable in the Contents pane and select
the Find Where Used menu item.

You can also find blocks that use a variable using one of these approaches:

• In the Search bar, select the for Variable Usage search type option.
• In the Search Results tab, right-click a variable and select the Find Where Used

menu item.

For details, see Finding Blocks That Use a Specific Variable.

Model Explorer: Exporting and Importing Workspace Variables

You can export workspace variables from the Model Explorer to a MATLAB file or MAT-
file.

One way to select the variables to export is by right-clicking the workspace node (for
example, Base Workspace) and selecting the Export menu item.

Another way to select variables to export is to:

1 In the Contents pane, select the variables that you want to export.
2 Right-click on one of the highlighted variables and select the Export Selected menu

item.

Also, you can import variables into a workspace in the Model Explorer:

1 In the Model Hierarchy pane, right-click the workspace into which you want to
import variables.

2 Select the Import menu item.

For details, see Exporting Workspace Variables and Importing Workspace Variables.

17-24

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bso5b65.html#bso5b9r
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bso5b65.html#bso5cp5
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bso5b65.html#bso5crg
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bso5b65.html#bso5csa

 User Interface Enhancements

Model Explorer: Link to System

The Contents of link at the top left side of the Contents pane links to the currently
selected node in the Model Hierarchy pane.

Lookup Table Editor Can Now Propagate Changes in Table Data to
Workspace Variables with Nonstandard Data Format

In R2010b, the Lookup Table Editor can propagate changes in table data to workspace
variables with nonstandard data format when you:

• Use sl_customization.m to register a customization function for the Lookup Table
Editor.

• Store this customization function on the MATLAB search path.

For more information, see Lookup Table Editor in the Simulink User's Guide.

Enhanced Designation of Hybrid Sample Time

Because of a new sample time enhancement, a block or signal with a continuous and a
fixed in minor step sample time is no longer designated as hybrid. Instead, the block or
signal is continuous and colored black. This enhancement assists in identifying hybrid
subsystems that require attention.

Inspect Solver Jacobian Pattern

You can now inspect the solver Jacobian pattern in MATLAB and thereby determine
if the pattern for your model is sparse. If so, the Sparse Perturbation Method and the
Sparse Analytical Method may be able to take advantage of this sparsity pattern to
reduce the number of computations necessary and thereby improve performance. For
a demonstration that explains how to inspect and assess the sparsity pattern, see
Exploring the Solver Jacobian Structure of a Model.

Inspection of Values of Elements in Checksum

You can now use Simulink.BlockDiagram.getChecksum to inspect the individual values
of the elements making up the ConfigSet checksum.

17-25

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqissk7-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html

R2010b

Conversion of Error and Warning Messages Identifiers

In R2010b, all error and warning message identifiers that Simulink issues have a
converted format. As part of this conversion, error and warning identifiers changed
from a two-part format to a three-part format. For example, the message identifier
'Simulink:SL_SetParamWriteOnly' is now 'Simulink:Command:SetParamWriteOnly'.

Compatibility Considerations

Scripts that search for specific message identifiers or that turn off warning messages
using an identifier must be updated with the new error and warning message identifiers.
For an example script and a complete mapping of the new identifiers to the original
identifiers, see http://www.mathworks.com/support/solutions/en/data/1-CNY5F6/
index.html.

View and Compare Logged Signal Data from Multiple Simulations Using
New Simulation Data Inspector Tool

This release introduces the new Simulation Data Inspector tool for quickly viewing and
comparing logged signal data. You can use the tool to:

• View signal data in a graph
• View a comparison of specified signal data in a graph, including a plot of their

differences
• Store signal data for multiple simulations so that you can specify and compare signal

data between multiple simulations

For more information, see Inspecting and Comparing Logged Signal Data and Basic
Simulation Workflow.

Viewing Requirements Linked to Model Objects

If your model, or blocks in your model, has links to requirements in external documents,
you can now perform the following tasks without a Simulink Verification and Validation
license:

• Highlight objects in a model that have links to requirements
• View information about a requirement

17-26

http://www.mathworks.com/support/solutions/en/data/1-CNY5F6/index.html
http://www.mathworks.com/support/solutions/en/data/1-CNY5F6/index.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsjs0w9.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gs/bsmies7.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gs/bsmies7.html

 User Interface Enhancements

• Navigate from a model object to associated requirements
• Filter requirements highlighting based on keywords

17-27

R2010b

S-Functions

Legacy Code Tool Support for Arrays of Simulink.Bus

The Legacy Code Tool now supports arrays of Simulink.Bus objects as valid data
types in function specifications. For more information see Supported Data Types under
Declaring Legacy Code Tool Function Specifications.

S-Functions Generated with legacy_code function and singleCPPMexFile
S-Function Option Must Be Regenerated

Due to an infrastructure change, if you have generated an S-function with a call to
legacy_code that defines the S-function option singleCPPMexFile, you must regenerate
the S-function to use it with this release of Simulink.

For more information, see the description of legacy_code and Integrating Existing C
Functions into Simulink Models with the Legacy Code Tool.

Compatibility Considerations

If you have generated an S-function with a call to legacy_code that defines the S-function
option singleCPPMexFile, regenerate the S-function to use it with this release of
Simulink.

Level-2 M-File S-Function Block Name Changed to Level-2 MATLAB S-
Function

Level-2 MATLAB S-Function is the new name for the Simulink block previously called
Level-2 M-File S-Function. In the Function Block Parameters dialog box, S-function
name is the new name for the parameter previously called M-file name. The block type
M-S-Function remains unchanged.

Compatibility Considerations

If you have a MATLAB script that uses the add_block function with the old block name,
you need to update your script with the new name.

17-28

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/bq4g1es-1.html#bq4g1es-10
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/bq4g1es-1.html#bq4g1es-6
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/legacy_code.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/legacy_code.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/bq4g1es-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/bq4g1es-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/legacy_code.html

 Functions Removed

Functions Removed

Function Being Removed in a Future Release

This function will be removed in a future release of Simulink software.

Function Name What Happens When You
Use This Function?

Compatibility Considerations

simplot Still works in R2010b Use the Simulation
Data Inspector to plot
simulation data.

17-29

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f1-11150.html#bspkiwb
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f1-11150.html#bspkiwb

R2010a
Version: 7.5

New Features

Bug Fixes

Compatibility Considerations

R2010a

Simulation Performance

Computation of Sparse and Analytical Jacobian for Implicit Simulink
Solvers

The implicit Simulink solvers now support numerical and analytical methods for
computing the Jacobian matrix in one of the following representations: sparse
perturbation, full perturbation, sparse analytical, and full analytical. The sparse
methods attempt to improve performance by taking advantage of sparsity information
associated with the Jacobian matrix. Similarly, the analytical methods attempt to
improve performance by computing the Jacobian using analytical equations rather than
the perturbation equations.

Since the applicability of these representations is highly model dependent, an auto
option directs Simulink to use a heuristic to choose an appropriate representation for
your model. In the case of a model that has a large number of states and for which the
Jacobian is computed in sparse analytical form, the performance improvement may be
substantial. In general, the performance improvement achieved varies from model to
model.

Sparse Perturbation Support for RSim and Rapid Accelerator Mode

For implicit Simulink solvers, the numerical sparse perturbation method for solving the
Jacobian supports both RSim and Rapid Accelerator mode.

Increased Accuracy in Detecting Zero-Crossing Events

The zero-crossing bracketing algorithm now uses a smaller tolerance for defining the
interval in which an event occurs. The resulting increased accuracy of locating an event
means that existing models may exhibit slightly different numerical results.

Saving Code Generated by Accelerating Models to slprj Folder

In Accelerator mode and in Rapid Accelerator mode, a build has historically resulted
in the creation of generated code, respectfully, in the modelname_accel_rtw and the
modelname_raccel_rtw folders in the current working folder. However, in order to be
more consistent with other builds, in R2010a and future releases, these files will be
created in the slprj/accel/modelname and the slprj/raccel/modelname folders.

18-2

 Component-Based Modeling

Component-Based Modeling

Defining Mask Icon Variables

For model efficiency, use the Icon & Ports pane to run MATLAB code and to define
variables used by the mask icon drawing commands. In releases earlier than R2010a, you
had to use the Initialization pane to define variables used for icon drawing.

Simulink executes the MATLAB code in the Icon & Ports pane only when the block icon
needs to be drawn. If you include variables used by mask icon drawing commands in the
Initialization pane, Simulink evaluates the variables as part of simulation and code
generation.

For more information, see Defining a Mask Icon.

Compatibility Considerations

Starting in R2010a, you can execute any MATLAB function in the Ports & Icons pane of
the Mask Editor. If a variable in the mask workspace has the same name as a function in
the Ports & Icons pane, Simulink returns an error.

For Each Subsystem Block

The For Each Subsystem block is very useful for modeling scenarios where you need to
repeat the same algorithm on individual elements (or submatrices) of an input signal.
The set of blocks within the subsystem represent the algorithm that is to be applied to a
single element (or submatrix) of the original signal. You can configure the inputs of the
subsystem to decompose the corresponding inputs into elements (or submatrices), and
configure the outputs to suitably concatenate the processed results. Additionally, each
block that has states inside this subsystem maintains separate sets of states for each
element or submatrix it processes. Consequently, the operation of this subsystem is akin
to copying the contents of the subsystem as many times as the number of elements in the
original input signal, and then processing each element through its respective subsystem
copy.

An additional benefit of this subsystem is that it may be utilized to improve code reuse
in Real-Time Workshop generated code for certain models. Consider a model containing
two reusable Atomic Subsystems with the same scalar algorithm applied to each element

18-3

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brx7xj4.html#bsp2zxb-1

R2010a

of the signal. If the input signal dimensions for these subsystems are different, you
will find that two distinct functions are produced in the code generated by Real-Time
Workshop for this model. Now, if you were to convert the two subsystems to For Each
Subsystems such that the contents of each processes a single scalar element, then you
will find that the two subsystems produce a single function in the code generated by
Real-Time Workshop. This function is parameterized by the number of elements to be
processed.

New Function-Call Split Block

A new Function-Call Split block allows you to branch periodic and asynchronous
function-call signals and connect them to multiple function-call subsystems (or models).
These subsystems (or models) are guaranteed to execute in the order determined by their
data dependencies. If a deterministic order cannot be computed, the model produces an
error.

To test the validity of your function-call connections, use the Model Advisor diagnostic,
Check usage of function-call connections. This diagnostic determines if:

• Configurations > Diagnostics > Connectivity > Invalid function-call
connection is set to error

• Configuration Parameters > Diagnostics > Connectivity > Context-
dependent inputs is set to Enable All

Trigger Port Enhancements

You can use trigger ports, which you define with a Trigger block, in new ways:

• Place edge-based (rising, falling, or either), as well as function-call, trigger ports at
the root level of a model. Before R2010a, to place a trigger port in a root-level model,
you had to set the trigger type to function-call.

• Place triggered ports in models referenced by a Model block. See Triggered Models.
• Lock down the data type, port dimension, and trigger signal sample time. To specify

these values, use the new Signal Attributes pane of the Block Parameters dialog box
of the Trigger block. Specifying these attributes is useful for unit testing and running
standalone simulation of a subsystem or referenced model that has an edge-based
trigger port. See Triggered Models.

18-4

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bs5037b-1.html#bs5037b-4
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/trigger.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bs5037b-1.html#bs5037b-4

 Component-Based Modeling

Compatibility Considerations

When you add a trigger port to a root-level model, if you use the File > Save As option
to specify a release before R2010a, Simulink replaces the trigger port with an empty
subsystem.

18-5

R2010a

Embedded MATLAB Function Blocks

New Ability to Use Global Data

Embedded MATLAB Function blocks are now able to use global data within a Simulink
model and across multiple models.

This feature provides these benefits:

• Allows you to share data between Embedded MATLAB Function blocks and other
Simulink blocks without introducing additional input and output wires in your model.
This reduces unnecessary clutter and improves the readability of your model.

• Provides a means of scoping the visibility of data within your model.

For more information, see Using Global Data with the MATLAB Function Block in the
Simulink documentation.

Support for Logical Indexing

Embedded MATLAB Function blocks now support logical indexing when variable sizing
is enabled. Embedded MATLAB supports variable-size data by default for MEX and C/C+
+ code generation.

For more information about logical indexing, see Using Logicals in Array Indexing in the
MATLAB documentation.

Support for Variable-Size Matrices in Buses

Embedded MATLAB Function blocks now support Simulink buses containing variable-
size matrices as inputs and outputs.

Support for Tunable Structure Parameters

Embedded MATLAB Function blocks now support tunable structure parameters. See
Working with Structure Parameters in MATLAB Function Blocks.

Check Box for 'Treat as atomic unit' Now Always Selected

In existing models, simulation and code generation for Embedded MATLAB Function
blocks always behave as if the Treat as atomic unit check box in the Subsystem

18-6

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsds2rv.html
http://www.mathworks.com/help/releases/R2012a/techdoc/math/f1-85462.html#bq7egb6-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bq156zx.html#brlqbhj

 Embedded MATLAB Function Blocks

Parameters dialog box is selected. Starting in R2010a, this check box is always selected
for consistency with existing behavior.

18-7

R2010a

Simulink Data Management

New Function Finds Variables Used by Models and Blocks

The new Simulink.findVars function returns information about workspace variables and
their usage. For example, you can use Simulink.findVars, sometimes in conjunction
with other Simulink functions, to:

• Identify all workspace variables used by a model or block
• Identify any workspace variables unused by a model or block
• Search a model for all places where a specified variable is referenced
• Subdivide a model, including only necessary variables with each model

See Simulink.findVars and the other Simulink functions referenced on that page for
more information.

MATLAB Structures as Tunable Structure Parameters

You can create a MATLAB structure that groups base workspace variables into a
hierarchy, and dereference the structure fields to provide values in Simulink block
parameter expressions. This technique reduces base workspace clutter and allows related
workspace variables to be conveniently grouped. However, in previous releases you could
not use a MATLAB structure as a masked subsystem or a model reference argument, and
no value given by a MATLAB structure field could be tuned. These restrictions limited
the usefulness of MATLAB structures for grouping variables used in block parameter
expressions.

In R2010a, these restrictions no longer apply to MATLAB structures that contain only
numeric data. You can use a numeric structure, or any substructure within it, as a
masked subsystem or a model reference argument, thereby passing all values in the
structure with a single argument. You can also control MATLAB structure tunability
using the same techniques that control MATLAB variable tunability. In R2010a, all
values in a given structure must be either tunable or nontunable. See Using Structure
Parameters for more information.

Simulink.saveVars Documentation Added

The Simulink.saveVars function was added in R2009b but was incompletely documented.
See New Function Exports Workspace Variables and Values for more information.

18-8

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.findvars.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.findvars.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsg3dn0-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsg3dn0-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.savevars.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/rn/br28su4.html#br7utsz-1

 Simulink Data Management

Custom Floating-Point Types No Longer Supported

Custom floating-point types, float(TotalBits, ExpBits), are no longer supported.

Compatibility Considerations

If you have code that uses custom floating-point types, modify this code using one of
these methods:

• Replace calls to float(TotalBits, ExpBits) with calls to fixdt('double') or
fixdt('single') as appropriate.

• Create your own custom float replacement function.

Write a MATLAB function custom_float_user_replacement and place the file
on your MATLAB path. This function must take TotalBits and ExpBits as input
arguments and return a supported numerictype object, such as fixdt('double')
or fixdt('single').

For example,

function DataType = custom_float_user_replacement(TotalBits,ExpBits)

if (TotalBits <= 32) && (ExpBits <= 8)

 DataType = numerictype('single');

else

 DataType = numerictype('double');

end

In R2010a and future releases, if the file custom_float_user_replacement.m is
on your MATLAB path, calls to float(TotalBits, ExpBits) automatically call
custom_float_user_replacement(TotalBits, ExpBits).

Data Store Logging

You can log the values of a local or global data store data variable for all the steps in a
simulation. Data store logging is useful for:

• Model debugging – view the order of all data store writes
• Confirming a model modification – use the logged data to establish a baseline for

comparing results to identify the impact of a model modification

18-9

R2010a

To log a local data store that you create with a Data Store Memory block:

• Use the new Logging pane of the Block Parameters dialog box for the Data Store
Memory block.

• Enable data store logging with the new Configuration Parameters > Data Import/
Export > Data stores parameter.

To log a data store defined by a Simulink.Signal object, from the MATLAB
command line, set DataLogging (which is a property of the LoggingInfo property of
Simulink.Signal) to 1.

For details, see Logging Data Stores. To see an example of logging a global data store,
run the sldemo_mdlref_dsm demo.

Models with No States Now Return Empty Variables

Simulink creates empty variables for state logging (xout) or final state logging (xfinal),
if both of these conditions apply:

• A model has no states.
• In the Configuration Parameters > Data Import/Export pane, you enable the

States, Final States, or both parameters (the default is off).

Compatibility Considerations

If you configure your model to return empty variables when it has no states, then a
possible result is that Simulink creates more variables than it did in previous releases.

Using model variants, running different models in batch mode, tuning models, or
reconfiguring models can produce unexpected results based on the state values. For
example, if you simulate a model that produces a state value, and then run a model
variant that produces no state, Simulink overwrites the state value with an empty
variable. If your model depends on the first state value not being overwritten if no state
is returned in a subsequent simulation (which was the case in previous releases), then
you get unexpected results.

To File Block Enhancements

The To File block now supports:

18-10

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsgflsm.html

 Simulink Data Management

• Saving very large data sets that may be too large to fit in RAM
• Saving logged data up until the point of a premature ending of simulation processing.

Previously, if the simulation processing did not complete, then To File did not store
any logged data for that simulation.

• A new Save format parameter to control whether the block uses Timeseries or
array format for data.

• Use Timeseries format for writing multidimensional, real, or complex inputs,
with different data types, (for example, built-in data types, including Boolean;
enumerated (enum) data and fixed-point data with a word length of up to 32 bits.

• Use Array format only for one-dimensional, double, noncomplex inputs. Time
values are saved in the first row. Additional rows correspond to input elements.

Compatibility Considerations

For data saved using MAT file versions prior to 7.3, the From File block can only load
two-dimensional arrays consisting of one-dimensional, double, noncomplex samples. To
load data of any other type, complexity, or dimension, use a Timeseries object and save
the file using MAT file version 7.3 or later. For example, use 'save file_name -v7.3
timeseries_object':

save file_name -v7.3 timeseries_object

From File Block Enhancements

The From File block now supports:

• Incremental loading of very large data sets that may be too large to fit in RAM
• Built-in data types, including Boolean
• Fixed-point data with a word length of up to 32 bits
• Complex data
• Multidimensional data

Root Inport Support for Fixed-Point Data Contained in a Structure

You can now use a root (top-level) Inport block to supply fixed-point data that is
contained in a structure.

18-11

R2010a

In releases before R2010a, you had to use a Simulink.Timeseries object instead of a
structure.

18-12

 Simulink Signal Management

Simulink Signal Management

Enhanced Support for Proper Use of Bus Signals

To improve model reliability and robustness, avoid mixing Mux blocks and bus signals.
To help you use Mux blocks and bus signals properly, R2010a adds these enhancements:

• When Simulink detects Mux block and bus signal mixtures, the Mux blocks used to
create bus signals diagnostic now generates:

• A warning when all the following conditions apply:

• You load a model created in a release before R2010a.
• The diagnostic is set to 'None'.
• Simulink detects improper Mux block usage.

• An error for new models
• Two new diagnostics in the Configuration Parameters > Diagnostics >

Connectivity pane:

• The Non-bus signals treated as bus signals diagnostic detects when Simulink
implicitly converts a non-bus signal to a bus signal to support connecting the
signal to a Bus Assignment or Bus Selector block.

• The Repair bus selections diagnostic repairs broken selections in the Bus Selector
and Bus Assignment block parameters dialog boxes that are due to upstream bus
hierarchy changes.

Compatibility Considerations

In R2010a, if you load a model created in a prior release, you might get warning
messages that you did not get before. To avoid getting Mux block-related warnings for
existing models that you want to load in R2010a, use the slreplace_mux function to
substitute Bus Creator blocks for any Mux blocks used to create buses signals.

Bus Initialization

In releases before R2010a:

18-13

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq8t6s8.html#bq8t67c-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq8t6s8.html#bq8t67c-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq8t6s8.html#bsdiq7d-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq8t6s8.html#bsdirdk-1

R2010a

• For virtual buses, you could specify a non-zero scalar or vector initial condition (IC)
value that applies to all elements of the bus. You could use a vector value only if all
bus elements use the same data type.

• For nonvirtual buses, the only value you could specify was zero.

In R2010a, you can create a MATLAB structure for an IC. You can:

• Specify ICs for all or a subset of the bus elements.
• Use the new Simulink.Bus.createMATLABStruct helper method to create a full

IC structure.
• Use the new Model Advisor Simulink check, Check for partial structure

parameter usage with bus signals, to detect when structure parameters are not
consistent in shape with the associated bus signal.

Using IC structures helps you to:

• Specify nonzero initial conditions
• Specify initial conditions for mixed-dimension signals
• Apply a different IC for each signal in the bus
• Specify ICs for a subset of signals in a bus without specifying ICs for all the signals
• Use the same ICs for multiple blocks, signals, or models

For information about creating and using initial condition structures, see Specifying
Initial Conditions for Bus Signals.

S-Functions for Working with Buses

The following S-functions provide a programmatic interface for working with buses:

S-function Description

ssGetBusElementComplexSignal Get the signal complexity for a bus
element.

ssGetBusElementDataType Get the data type identifier for a bus
element.

ssGetBusElementDimensions Get the dimensions of a bus element.
ssGetBusElementName Get the name of a bus element.

18-14

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsff8zh.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsff8zh.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/ssgetbuselementcomplexsignal.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/ssgetbuselementdatatype.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/ssgetbuselementdimensions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/ssgetbuselementname.html

 Simulink Signal Management

S-function Description

ssGetBusElementNumDimensions Get the number of dimensions for a bus
element.

ssGetBusElementOffset Get the offset from the start of the bus data
type to a bus element.

ssGetNumBusElements Get the number of elements in a bus signal.
ssGetSFcnParamName Get the value of a block parameter for an S-

function block.
ssIsDataTypeABus Determine whether a data type identifier

represents a bus signal.
ssRegisterTypeFromParameter Register a data type that a parameter in

the Simulink data type table specifies.
ssSetBusInputAsStruct Specify whether to convert the input bus

signal for an S-function from virtual to
nonvirtual.

ssSetBusOutputAsStruct Specify whether the output bus signal
from an S-function must be virtual or
nonvirtual.

ssSetBusOutputObjectName Specify the name of the bus object that
defines the structure and type of the output
bus signal.

Command Line API for Accessing Information About Bus Signals

You can use two new signal property parameters to get information about the type and
hierarchy of a signal programmatically:

• CompiledBusType

• Returns information about whether the signal connected to a port is a bus, and if
so, whether it is a virtual or nonvirtual bus

• SignalHierarchy

• Returns the signal name of the signal. If the signal is a bus, the parameter also
returns the hierarchy and names of the bus signal.

See Model Parameters and View Information about Buses.

18-15

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/ssgetbuselementnumdimensions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/ssgetbuselementoffset.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/ssgetnumbuselements.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/ssgetsfcnparamname.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/ssisdatatypeabus.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/ssregistertypefromparameter.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/sssetbusinputasstruct.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/sssetbusoutputasstruct.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/sssetbusoutputobjectname.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/f23-7515.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bq4h5ej-1.html#bshrkah

R2010a

Signal Name Propagation for Bus Selector Block

The new SignalNameFromLabel port parameter supports signal name propagation
for Bus Creator block input signals whenever you change the name of an input signal
programmatically. You can set this parameter with the set_param command, specifying
either a port or line handle and the signal name to propagate.

See Model Parameters.

18-16

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/f23-7515.html

 Block Enhancements

Block Enhancements

New Square Root Block

You can use the new Sqrt block to perform square-root calculations. This block includes
the following functions:

Function Icon

sqrt

signedSqrt

rSqrt

Compatibility Considerations

The sqrt and 1/sqrt functions no longer appear in the Math Function block. For
backward compatibility, models with a Math Function block that uses one of these two
functions continue to work. However, consider running the slupdate function on your
model. slupdate replaces any Math Function block that uses sqrt or 1/sqrt with an
equivalent Sqrt block that ensures the same behavior.

New Second-Order Integrator Block

You can use the new Second-Order Integrator block to model second-order systems
that have bounds on their states. This block is useful for modeling physical systems, for
example, systems that use Newton's Second Law and have constraints on their motion.

Benefits of using this block include:

• Highly accurate results
• Efficient detection of zero crossings

18-17

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/sqrt.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/mathfunction.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/sqrt.html

R2010a

• Prevention of direct feedthrough and algebraic loops

New Find Nonzero Elements Block

You can use the new Find block to locate all nonzero elements of an input signal. This
block outputs the indices of nonzero elements in linear indexing or subscript form and
provides these benefits:

When you use the block to... You can...

Convert logical indexing to linear indexing Use the linear indices you get from
processing a logical indexing signal as the
input to a Selector or Assignment block

Extract subscripts of nonzero values Use the subscript of matrices for 2-D or
higher-dimensional signal arrays to aid
with image processing

Represent sparse signals Use indices and values as a compact
representation of sparse signals

PauseFcn and ContinueFcn Callback Support for Blocks and Block
Diagrams

The new PauseFcn and ContinueFcn callbacks detect clicking of the Pause and
Continue buttons during simulation. You can set these callbacks using the set_param
command or the Callbacks tab of the Model Properties dialog box. Both the PauseFcn
and ContinueFcn callbacks support Normal and Accelerator simulation modes.

Gain Block Can Inherit Parameter Data Type from Gain Value

The Gain block now supports the Parameter data type setting of Inherit: Inherit
from 'Gain'. This enhancement provides the benefit of inheriting the parameter data
type directly from the Gain parameter. For example:

If you set Gain to... The parameter data type inherits...

2 double

single(2) single

18-18

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/find.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/selector.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/assignment.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/set_param.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/gain.html

 Block Enhancements

If you set Gain to... The parameter data type inherits...

int8(2) int8

Direct Lookup Table (n-D) Block Enhancements

The Direct Lookup Table (n-D) block now supports:

• Multidimensional signals for the table input port
• Fixed-point data types for the table input port
• Explicit specification of the table data type in the block dialog box

Multiport Switch Block Allows Explicit Specification of Data Port Indices

The icon for the Multiport Switch block now shows the values of indices on data port
labels. This enhancement helps you identify the data inputs without having to open the
block dialog box:

Block Parameter Settings Block Icon

18-19

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/directlookuptablend.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/multiportswitch.html

R2010a

When you load existing models that contain the Multiport Switch block, the following
parameter mapping occurs:

Block Parameter Settings of a Model from
R2009b or Earlier

Block Parameter Settings When You Load the
Model in R2010a

The following command-line parameter mapping applies:

Old Prompt on Block
Dialog Box

New Prompt on Block
Dialog Box

Old Command-Line
Parameter

New Command-Line
Parameter

Number of inputs Number of data
ports

Inputs Same

Use zero-based
indexing

Data port order zeroidx DataPortOrder

The parameter mapping in R2010a ensures that you get the same block behavior as in
previous releases.

Compatibility Considerations

In R2010a, a warning appears at compile time when your model contains a Multiport
Switch block with the following configuration:

• The control port uses an enumerated data type.
• The data port order is contiguous.

During edit time, the block icon cannot show the mapping of each data port to an
enumerated value. This configuration can also lead to unused ports during simulation
and unused code during Real-Time Workshop code generation.

18-20

 Block Enhancements

Run the slupdate function on your model to replace each Multiport Switch block of this
configuration with a block that explicitly specifies data port indices. Otherwise, your
model might not work in a future release.

In R2010a, the following Multiport Switch block configuration also produces a warning at
compile time:

• The control port uses a fixed-point or built-in data type.
• The data port order is contiguous.
• At least one of the contiguous data port indices is not representable with the data type

of the control port.

The warning alerts you to unused ports during simulation and unused code during Real-
Time Workshop code generation.

Trigonometric Function Block Supports CORDIC Algorithm and Fixed-Point
Data Types

When you select sin, cos, or sincos for the Trigonometric Function block, additional
parameters are available.

New Block Parameter Purpose Benefit

Approximation method Specify the type of
approximation the block
uses to compute output:
None or CORDIC.

Enables you to use a faster
method of computing block
output for fixed-point and
HDL applications.

Number of iterations For the CORDIC algorithm,
specify how many iterations
to use for computing block
output.

Enables you to adjust the
precision of your block
output.

This block now supports fixed-point data types when you select sin, cos, or sincos and
set Approximation method to CORDIC.

Enhanced Block Support for Enumerated Data Types

The following Simulink blocks now support enumerated data types:

18-21

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/trigonometricfunction.html

R2010a

• Data Type Conversion Inherited
• Data Type Duplicate
• Interval Test
• Interval Test Dynamic
• Probe (input only)
• Relay (output only)
• Unit Delay Enabled
• Unit Delay Enabled Resettable
• Unit Delay Resettable
• Unit Delay With Preview Enabled
• Unit Delay With Preview Enabled Resettable
• Unit Delay With Preview Enabled Resettable External RV
• Unit Delay With Preview Resettable
• Unit Delay With Preview Resettable External RV

For more information, see Enumerations and Modeling in the Simulink User's Guide.

Lookup Table Dynamic Block Supports Direct Selection of Built-In Data
Types for Outputs

In R2010a, you can select the following data types directly for the Output data type
parameter of the Lookup Table Dynamic block:

• double

• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

• boolean

18-22

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/datatypeconversioninherited.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/datatypeduplicate.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/intervaltest.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/intervaltestdynamic.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/probe.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/relay.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/unitdelayenabled.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/unitdelayenabledresettable.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/unitdelayresettable.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/unitdelaywithpreviewenabled.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/unitdelaywithpreviewenabledresettable.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/unitdelaywithpreviewenabledresettableexternalrv.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/unitdelaywithpreviewresettable.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/unitdelaywithpreviewresettableexternalrv.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brsaydz-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/lookuptabledynamic.html

 Block Enhancements

Previously, you had to enter an expression for Output data type to specify a built-in
data type.

Compare To Zero and Wrap To Zero Blocks Now Support Parameter
Overflow Diagnostic

If the input data type to a Compare To Zero or Wrap To Zero block cannot represent zero,
detection of this parameter overflow occurs. In the Diagnostics > Data Validity pane
of the Configuration Parameters dialog box, set Parameters > Detect overflow to
warning or error.

Data Type Duplicate Block Enhancement

The Data Type Duplicate block is now a built-in block. Previously, this block was
a masked S-Function. The read-only BlockType parameter has changed from S-
Function to DataTypeDuplicate.

Compatibility Considerations

In R2010a, signal propagation might behave differently from previous releases. As a
result, your model might not compile under these conditions:

• Your model contains a Data Type Duplicate block in a source loop.
• Your model has underspecified signal data types.

If your model does not compile, set data types for signals that are not fully specified.

Lookup Table and Lookup Table (2-D) Blocks To Be Deprecated in a Future
Release

In a future release, the Lookup Table and Lookup Table (2-D) blocks will no longer
appear in the Simulink Library Browser. Consider replacing instances of those two
blocks by using 1-D and 2-D versions of the Lookup Table (n-D) block. Among other
enhancements, the Lookup Table (n-D) block supports the following features that the
other two blocks do not:

• Specification of parameter data types different from input or output signal types

18-23

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/comparetozero.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/wraptozero.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/datatypeduplicate.html

R2010a

• Reduced memory use and faster code execution for evenly spaced breakpoints that are
nontunable

• Fixed-point data types with word lengths up to 128 bits
• Specification of index search method
• Specification of action for out-of-range inputs

To upgrade your model:

Step Description Reason

1 Run the Simulink Model Advisor check
for Check model, local libraries, and
referenced models for known upgrade
issues.

Identify blocks that do not have
compatible settings with the Lookup
Table (n-D) block.

2 For each block that does not have
compatible settings with the Lookup
Table (n-D) block:

• Decide how to address each warning.
• Adjust block parameters as needed.

Modify each Lookup Table or Lookup
Table (2-D) block to make them
compatible.

3 Repeat steps 1 and 2 until you are
satisfied with the results of the Model
Advisor check.

Ensure that block replacement works
for the entire model.

4 Run the slupdate function on your
model.

Perform block replacement with the
Lookup Table (n-D) block.

Compatibility Considerations

The Model Advisor check groups all Lookup Table and Lookup Table (2-D) blocks into
three categories:

• Blocks that have compatible settings with the Lookup Table (n-D) block
• Blocks that have incompatible settings with the Lookup Table (n-D) block
• Blocks that have repeated breakpoints

Blocks with Compatible Settings

When a block has compatible parameter settings with the Lookup Table (n-D) block,
automatic block replacement can occur without backward incompatibilities.

18-24

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/bq6d4aa-1.html#bq89gfp
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/bq6d4aa-1.html#bq89gfp
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/bq6d4aa-1.html#bq89gfp
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html

 Block Enhancements

Parameter Settings in the Lookup Table
(n-D) Block After Block Replacement

Lookup Method in the Lookup
Table or Lookup Table (2-D) Block

Interpolation Extrapolation

Interpolation-

Extrapolation

Linear Linear

Interpolation-Use End

Values

Linear None-Clip

Use Input Below None-Flat Not applicable

Depending on breakpoint characteristics, the Lookup Table (n-D) block uses one of two
index search methods.

Breakpoint Characteristics in the Lookup Table or
Lookup Table (2-D) Block

Index Search Method in the Lookup Table (n-D)
Block After Block Replacement

Not evenly spaced Binary search

Evenly spaced and tunable
Evenly spaced and nontunable

A prompt appears, asking you to select Binary
search or Evenly spaced points.

The Lookup Table (n-D) block also adopts other parameter settings from the Lookup
Table or Lookup Table (2-D) block. For parameters that exist only in the Lookup Table
(n-D) block, the following default settings apply after block replacement:

Lookup Table (n-D) Block Parameter Default Setting After Block Replacement

Breakpoint data type Inherit: Same as corresponding input

Action for out-of-range input None

Blocks with Incompatible Settings

When a block has incompatible parameter settings with the Lookup Table (n-D) block,
the Model Advisor shows a warning and a recommended action, if applicable.

• If you perform the recommended action, you can avoid incompatibility during block
replacement.

• If you use automatic block replacement without performing the recommended action,
you might see numerical differences in your results.

18-25

R2010a

Incompatibility Warning Recommended Action What Happens for Automatic Block
Replacement

The Lookup Method is Use
Input Nearest or Use Input
Above. The Lookup Table (n-
D) block does not support these
lookup methods.

Change the lookup method to
one of the following:

• Interpolation -

Extrapolation

• Interpolation - Use

End Values

• Use Input Below

The Lookup Method
is Interpolation -
Extrapolation, but the input
and output are not the same
floating-point type. The Lookup
Table (n-D) block supports
linear extrapolation only when
all inputs and outputs are the
same floating-point type.

Change the extrapolation
method or the port data types
of the block.

The Lookup Method changes
to Interpolation - Use End
Values.

In the Lookup Table (n-D) block,
this setting corresponds to:

• Interpolation set to Linear
• Extrapolation set to None-

Clip

You also see a message that
explains possible numerical
differences.

The block uses small fixed-
point word lengths, so that
interpolation uses only one
rounding operation. The
Lookup Table (n-D) block uses
two rounding operations for
interpolation.

None You see a message that explains
possible numerical differences.

Blocks with Repeated Breakpoints

When a block has repeated breakpoints, the Model Advisor recommends that you
change the breakpoint data and rerun the check. You cannot perform automatic block
replacement for blocks with repeated breakpoints.

Elementary Math Block Now Obsolete

The Elementary Math block is now obsolete. You can replace any instance of this obsolete
block in your model by using one of these blocks in the Math Operations library:

• Math Function

18-26

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/mathfunction.html

 Block Enhancements

• Rounding Function
• Trigonometric Function

Compatibility Considerations

If you open a model that contains an Elementary Math block, a warning message
appears. This message suggests running slupdate on your model to replace each instance
of the obsolete block with an appropriate substitute.

If you try to start simulation or generate code for a model that contains this obsolete
block, an error message appears.

DocBlock Block RTF File Compression

In R2010a, when you add or modify a DocBlock block that uses Microsoft RTF format and
you save the model, Simulink compresses the RTF file. The saved RTF files with images
are much smaller than in previous releases.

Compatibility Considerations

In R2010a, if you use slupdate or save a model that includes a DocBlock block that uses
RTF format, you cannot run the model in an earlier version of Simulink.

To run a model that has a compressed RTF file in an earlier version of Simulink, use
Save As to save the model in the format of the earlier release.

Simulink Extras PID Controller Blocks Deprecated

In R2010a, the PID Controller (with Approximate Derivative) and PID Controller blocks
of the Simulink Extras library no longer appear in the Simulink Library Browser. For
models created using R2009b or earlier, consider using the slupdate function to replace
these blocks with the new PID Controller block of the Simulink/Continuous or Simulink/
Discrete library. Among other enhancements, the new PID Controller block supports:

• Continuous-time and discrete-time modeling
• Ideal and Parallel controller forms
• Automatic PID tuning (requires a Simulink Control Design™ license)

18-27

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/roundingfunction.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/trigonometricfunction.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/docblock.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/pidcontroller.html

R2010a

For more information, see the PID Controller and PID Controller (2 DOF) block reference
pages.

Compatibility Considerations

For backward compatibility, simulation and code generation of models that contain
the deprecated PID Controller (with Approximate Derivative) or PID Controller block
continue to work.

18-28

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/pidcontroller.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/pidcontroller2dof.html

 User Interface Enhancements

User Interface Enhancements

Model Explorer Column Views

The Model Explorer now supports column views, which specify sets of property columns
to display in the Contents pane. The Model Explorer displays only the properties
that are defined for the current column view. The Model Explorer does not add new
properties dynamically as you add objects to the Contents pane. Using a defined subset
of properties to display streamlines the task of exploring and editing model object
properties and increases the density of the data displayed.

Model Explorer provides several standard column views with common property sets. You
can:

• Select the column view based on the task you are performing
• Customize the standard column views
• Create your own column views
• Export and import column views saved in MAT-files, which you can share with other

users

See The Model Explorer: Controlling Contents Using Views.

Compatibility Considerations

Column views replace the Customize Contents option provided in previous releases.

In R2010a, the Model Explorer provides a different interface for performing some of
the tasks that you previously performed using View menu items. The following table
summarizes differences between R2009b and R2010a.

R2009b View Menu Item R2010a Model Explorer Interface Change

Dialog View Replaced by Show Dialog Pane
Customize Contents Replaced by Column View > Show

Details
Show Properties Eliminated; select Column View > Show

Details to specify properties to display

18-29

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsow49o.html

R2010a

R2009b View Menu Item R2010a Model Explorer Interface Change

Mark Nonexistent Properties Replaced by Show Nonexistent
Properties as'-'

Library Browser Eliminated (you can access the Library
Browser from the Simulink Editor View
menu)

List View Options Replaced by Row Filter

Model Explorer Display of Masked Subsystems and Linked Library
Subsystems

The Model Explorer now contains global options for specifying whether the Model
Explorer displays the contents of library links and masked subsystems. These options
also control whether the Model Hierarchy pane displays linked or masked subsystems.
See Displaying Masked Subsystems and Displaying Linked Library Subsystems.

Compatibility Considerations

In R2010a, when you select a masked subsystem node in the Model Hierarchy pane,
the Contents pane displays the objects of the subsystem, reflecting the global setting to
display masked subsystems. In prior releases, if you selected a masked subsystem node,
you needed to right-click the node and select Look Under Mask to view the subsystem
objects in the Contents pane.

In R2010a, the search results reflect the Show Library Links and Show Masked
Subsystems settings. In previous releases, you specified the Look Inside Masked
Subsystems and Look Inside Linked Subsystems options as part of the search
options. R2010a does not include those search options.

Model Explorer Object Count

The top-right section of the Contents pane displays a count of objects found for the
currently selected nodes in the Model Hierarchy pane. The count indicates the number
of objects displayed in the Contents pane, compared to the total number of objects in the
currently selected nodes. The number of displayed objects is less than the total number of
objects in scope when you filter some objects by using View > Row Filter options. See
Object Count.

18-30

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsf89g5.html#bsf89vb
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsf89g5.html#bsf89s3
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bso34oh.html#bso343s-1

 User Interface Enhancements

Model Explorer Search Option for Variable Usage

You can use the new for Variable Usage search type to search for blocks that use a
variable that is defined in the base or model workspaces. See Search Bar Controls.

Model Explorer Display of Signal Logging and Storage Class Properties

The Model Explorer Contents pane displays the following additional properties for
signal lines:

• Signal logging-related properties (such as DataLogging)
• Storage class properties, including properties associated with custom storage classes

for signals

Displaying these properties in the Contents pane enables batch editing. Prior to
R2010a, you could edit these properties only in the Signal Properties dialog box.

Model Explorer Column Insertion Options

In R2010a, right-clicking on a column heading in the Contents pane provides two new
column insertion options:

• Insert Path – adds the Path property column to the right of the selected column.
• Insert Recently Hidden Columns – selects a property from a list of columns you

recently hid, to add that property column to the right of the selected column

See Adding Property Columns.

Diagnostics for Data Store Memory Blocks

The Model Advisor 'By Task' folder now contains a Data Store Memory Blocks subfolder.
This subfolder contains checks relating to Data Store Memory blocks that examine your
model for:

• Multitasking, strong typing, and shadowing issues
• An enabled status of the read/write diagnostics
• Read/write issues

18-31

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsf88lj.html#bsf88s3
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsow6lm.html#bso333m

R2010a

New Command-Line Option for RSim Targets

A new –h command-line option allows you to print a summary of the available options for
RSim executable targets.

Simulink.SimulationOutput.get Method for Obtaining Simulation Results

The Simulink.SimulationOutput class now has a get method. After simulating
your model, you can use this method to access simulation results from the
Simulink.SimulationOutput object.

Simulink.SimState.ModelSimState Class has New snapshotTime Property

The Simulink.SimState.ModelSimState class has a new snapshotTime property. You
can use this property to access the exact time at which Simulink took a “snapshot” of the
simulation state (SimState) of your model.

Simulink.ConfigSet.saveAs to Save Configuration Sets

The saveAs method is added to the Simulink.ConfigSet class to allow you to easily save
the settings of configuration sets as MATLAB functions or scripts. Using the MATLAB
function or script, you can share and archive model configuration sets. You can also
compare the settings in different configuration sets by comparing the MATLAB functions
or scripts of the configuration sets.

For details, see Save a Configuration Set in the Simulink User's Guide.

18-32

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.configset.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f11-35796.html#bsgkoao-1

 S-Functions

S-Functions

Building C MEX-Files from Ada and an Example Ada Wrapper

In an R2008b release note, MathWorks announced that support for Ada S-functions
in Simulink would be removed in a future release and a migration strategy would be
forthcoming.

In this release, the addition of Technical Note 1821 facilitates your incorporating
Ada code into Simulink without using Ada S-function support. This note, “Developing
and Building Ada S-Functions for Simulink”, is available at Technical Note 1821 and
demonstrates:

• How to build a C MEX S-function from Ada code without using the mex –ada
command

• An example of an Ada wrapper around a C MEX S-Function API

New S-Function API Checks for Branched Function-Calls

A new S-function API, ssGetCallSystemNumFcnCallDestinations, allows you to
determine the number of function-call blocks that your S-function calls. Based on this
returned number, you can then deduce whether or not your S-function calls a branched
function-call.

You can call this SimStruct function from mdlSetWorkWidths or later in your S-
function.

New C MEX S-Function API and M-File S-Function Flag for Compliance
with For Each Subsystem

To allow a C MEX S-function to reside inside of a For Each Subsystem block, you must
call the new ssSupportsMultipleExecInstances API and set the flag to true in the
mdlSetWorkWidths method.

As for M-file S-functions, you must set the new flag
block.SupportsMultipleExecInstances to true in the Setup section.

18-33

http://www.mathworks.com/support/tech-notes/1800/1821.html

R2010a

Legacy Code Tool Enhanced to Support Enumerated Data Types and
Structured Tunable Parameters

The Legacy Code Tool has been enhanced to support

• Enumerated data types for input, output, parameters, and work vectors
• Structured tunable parameters

For more information about data types that the Legacy Code Tool supports, see
Supported Data Types. For more information about the Legacy Code Tool, see

• Integrating Existing C Functions into Simulink Models with the Legacy Code Tool in
the Writing S-Functions documentation

• legacy_code function reference page

Compatibility Considerations

For enumerated data type support:

• If you upgrade from R2008b or later release, you can continue to compile the S-
function source code and continue to use the compiled output from an earlier release
without recompiling the code.

• If you upgrade from R2008a or earlier release, you cannot use enumerated types; the
Simulink engine will display an error during simulation.

You cannot use tunable structured parameters with Legacy Code Tool in a release prior
to R2010a.

18-34

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/bq4g1es-1.html#bq4g1es-10
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/bq4g1es-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/legacy_code.html

 Documentation Improvements

Documentation Improvements

Modeling Guidelines for High-Integrity Systems

MathWorks intends the Modeling Guidelines for High-Integrity Systems document
to be for engineers developing models and generating code for high-integrity systems
using Model-Based Design with MathWorks products. This document describes creating
Simulink models that are complete, unambiguous, statistically deterministic, robust, and
verifiable. The document focus is on model settings, block usage, and block parameters
that impact simulation behavior or code generated by the Real-Time Workshop
Embedded Coder product.

These guidelines do not assume that you use a particular safety or certification standard.
The guidelines reference some safety standards where applicable, including DO-178B,
IEC 61508, and MISRA C.

You can use the Model Advisor to support adhering to these guidelines. Each guideline
lists the checks that are applicable to that guideline.

For more information, see Modeling Guidelines for High-Integrity Systems in the
Simulink documentation.

MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow Included in Help

MathWorks Automotive Advisory Board (MAAB) involves major automotive original
equipment manufacturers (OEMs) and suppliers in the process of evolving MathWorks
controls, simulation, and code generation products, including the Simulink, Stateflow,
and Real-Time Workshop products. An important result of the MAAB has been the
“MathWorks Automotive Advisory Board Control Algorithm Modeling Guidelines Using
MATLAB, Simulink, and Stateflow.” Help for the Simulink product now includes these
guidelines. The MAAB guidelines link to relevant Model Advisor MAAB check help and
MAAB check help links to relevant MAAB guidelines.

For more information, see MathWorks Automotive Advisory Board Control Algorithm
Modeling Guidelines Using MATLAB, Simulink, and Stateflow in the Simulink
documentation.

18-35

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/bser45n.html
http://www.mathworks.com/industries/aerospace/standards/do-178b.html
http://www.mathworks.com/industries/auto/standards/iec-61508.html
http://www.mathworks.com/industries/aerospace/standards/misra-c.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/bser45n.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/bser4fn.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/mdl_gd/bser4fn.html

R2009bSP1
Version: 7.4.1

Bug Fixes

R2009b
Version: 7.4

New Features

Bug Fixes

Compatibility Considerations

R2009b

Simulation Performance

Single-Output sim Syntax

An enhanced sim command provides for greater ease of use and for greater compatibility
with parfor loops. Since the command now saves all simulation results to a single
object, the management of output variables is straightforward for all cases, including
parallel computing.

Expanded Support by Rapid Accelerator

Simulink Rapid Accelerator mode now supports root inputs of enumerated data type and
fixed-point parameters of any word length.

SimState Support in Accelerator Mode

Simulink Accelerator mode now supports the SimState feature. You can therefore save
the simulation state and later resume the simulation from the exact save time.

Integer Arithmetic Applied to Sample Hit Computations

For fixed-step simulations, Simulink now computes sample time hits using integer
arithmetic. This modification improves the timing resolution of sample hits of multirate
models.

Compatibility Considerations

Previously, if an S-function had two rates, and if (ssIsSampleHit(S, idx1) == true
&& ssIsSampleHit(S,idx2) == true, then Simulink would adjust the task times to be
evaluated as ssGetTaskTime(S, idx1) == ssGetTaskTime(S, idx2). Simulink no longer
forces this equality; instead, Simulink now leaves the individual task times to be integer
multiples of their corresponding periods. Consequently, existing code with logic that
relies upon the equality of the task times needs to be updated.

In addition, the behavior of the command get_param(model, 'SimulationTime') is now
different. Instead of returning the time of the next known sample hit at the bottom of the
current step, this command now returns the current time.

20-2

 Simulation Performance

Improved Accuracy of Variable-Step Discrete Solver

For variable-step discrete simulation of purely discrete models, where the fundamental
step size is the same as the fastest discrete rate, Simulink now uses the specified start
and stop times.

Compatibility Considerations

Previously, if the fundamental step size was equal to the fastest discrete rate, the
Simulink simulation did not uniformly honor the user-specified start and stop times.
Specifically, if the start and stop times were not exact multiples of the fundamental step
size, then the start time was adjusted to the time of the first sample time hit and the
simulation stopped at the sample time hit just before the specified stop time. However, if
the simulation was required to hit certain time points (either by specifying TSPAN in the
sim command such as 'sim('Model_A',[0 10])', or via the OutputTimes parameter), then
the start and stop times were not adjusted

Now Simulink variable-step simulation of purely discrete models consistently honors the
user-specified start and stop times, irrespective of whether the fastest discrete sample
time is the GCD of all of the other sample times

20-3

R2009b

Component-Based Modeling

Enhanced Library Link Management

In R2009b, improved library link management (Links Tool) facilitates visualizing and
restoring edited library links. See Working with Library Links for more information.

Enhanced Mask Editor Provides Tabs and Signal Attributes

You can use the R2009b Mask Editor to create a mask that has tabbed panes, and
define the same signal attribute specifications in a mask that built-in Simulink blocks
provide. See Working with Block Masks , Simulink Mask Editor and Mask Icon Drawing
Commands for more information.

Model Reference Variants

Model reference variants allow you to configure any Model block to select its referenced
model from a set of candidate models. The selection occurs when you compile the model
that contains the Model block, and depends on the values of one or more MATLAB
variables or Simulink parameters in the base workspace. To configure a Model block to
select the model that it references, you:

• Provide a set of Boolean expressions that reference base workspace values.
• Associate each expression with one of the models that the block could reference.

When you compile the model, Simulink evaluates all the expressions. Each Model block
that uses model reference variants then selects the candidate model whose associated
expression is true, and ignores all the other models. Compilation then proceeds exactly
as if you had entered the name of the selected model literally in the Model block's Model
name field.

You can nest Model blocks that use variants to any level, allowing you to define any
number of arbitrarily complex customized models within a single framework. No matter
how many simulation environments you define, selecting one requires only setting
variable or parameter values appropriately in the base workspace. See Setting Up Model
Variants for more information.

20-4

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brknh7w.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f8-15210.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/brxj49q-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/bqbsiob.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/bqbsiob.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bskoahv-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bskoahv-1.html

 Component-Based Modeling

Protected Referenced Models

A protected model is a referenced model from which all block and line information has
been eliminated. Protecting a model does not use encryption technology. A protected
model can be distributed without revealing the intellectual property that it embodies.
The model is said to run in Protected mode, and gives the same results that its source
model does when run in Accelerator mode.

You can use a protected model much as you could any referenced model that executes
in Accelerator mode. Simulink tools work with protected models to the extent possible
given that the model's contents are obscured. For example, the Model Explorer and the
Model Dependency Viewer show the hierarchy under an ordinary referenced model, but
not under a protected model. Signals in a protected model cannot be logged, because the
log could reveal information about the protected model's contents.

When a referenced model requires object definitions or tunable parameters that are
defined in the MATLAB base workspace, the protected version of the model may need
some or all of those same definitions when it executes as part of a third-party model.
Simulink provides techniques for identifying and obtaining the needed data. You can use
the Simulink Manifest Tools or other techniques to package the model and any data for
delivery.

Protecting a model requires a Real-Time Workshop license, which makes code generation
capabilities available for use internally when creating the protected version of the model.
The receiver of a protected model does not need a Real-Time Workshop license to use the
model, and cannot use Real-Time Workshop to generate code for the model or any model
that references it.

To accommodate protected models, the Model block now accepts a suffix in the Model
name field. This suffix can be .mdl for an unprotected model or .mdlp for a protected
model. If the suffix is omitted, Model block first searches the MATLAB path for a block
with the specified name and the suffix .mdl. If that search fails, the block searches the
path for a model with the suffix .mdlp.

The Model block now has a field named ProtectedModel, a boolean that indicates
whether the referenced model is protected, and three fields for representing the name
of the referenced model in different formats: ModelNameDialog, ModelName, and
ModelFile. See the Model block parameters in Ports & Subsystems Library Block
Parameters for information about these parameters. For more information about
protecting models, see Protecting Referenced Models.

20-5

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/f23-20073.html#br8pz2z
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/f23-20073.html#br8pz2z
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/br6xrii.html

R2009b

Simulink Manifest Tools

Enhanced Simulink Manifest Tools now discover and analyze model variants, protected
models, and Simscape files.

New manifest analysis options for controlling whether to report file dependency locations
for user files, all files, or no files. For example, you may not want to view the file locations
of all the dependencies on MathWorks products. This is typical if your main use of
Simulink Manifest Tools is to discover and package all the required files for your model.
By not analyzing file locations, you speed up report creation, and the report is smaller
and easier to navigate. If you need to trace all dependencies to understand why a
particular file or toolbox is required by a model, you can always regenerate the full report
of all files.

The manifest report is enhanced with sortable columns, and now MATLAB Programs as
well as P-files are reported in the manifest if both exist.

For more information, see Model Dependencies in the Simulink User's Guide.

S-Function Builder

The S-Function Builder has been enhanced to support bus signals for managing complex
signal interfaces. See Developing S-Functions for more information.

20-6

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bq2ifjj-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/bsd99w_-1.html

 Embedded MATLAB Function Blocks

Embedded MATLAB Function Blocks

Support for Variable-Size Arrays and Matrices

Embedded MATLAB Function blocks now support variable-size arrays and matrices
with known upper bounds. With this feature, you can define inputs, outputs, and local
variables to represent data that varies in size at runtime.

Change in Text and Visibility of Parameter Prompt for Easier Use with
Fixed-Point Advisor and Fixed-Point Tool

The Lock output scaling against changes by the autoscaling tool check box is now
Lock data type setting against changes by the fixed-point tools. Previously, this
check box was visible only if you entered an expression or a fixed-point data type, such
as fixdt(1,16,0). This check box is now visible for any data type specification. This
enhancement enables you to lock the current data type settings on the dialog box against
changes that the Fixed-Point Advisor or Fixed-Point Tool chooses.

New Compilation Report for Embedded MATLAB Function Blocks

The new compilation report provides compile-time type information for the variables and
expressions in your Embedded MATLAB functions. This information helps you find the
sources of error messages and understand type propagation issues, particularly for fixed-
point data types. For more information, see Working with MATLAB Function Reports in
the Simulink User's Guide.

Compatibility Considerations

The new compilation report is not supported by the MATLAB internal browser on
Sun™ Solaris™ 64-bit platforms. To view the compilation report on Sun Solaris 64-
bit platforms, you must configure your MATLAB Web preferences to use an external
browser, for example, Mozilla Firefox. To learn how to configure your MATLAB Web
preferences, see Web Preferences in the MATLAB documentation.

New Options for Controlling Run-time Checks for Faster Performance

In simulation, the code generated for Embedded MATLAB Function blocks includes
various run-time checks. To reduce the size of the generated code, and potentially

20-7

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/br770af-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html

R2009b

improve simulation times, you can use new Simulation Target configuration
parameters to control whether or not your generated code performs:

• Integrity checks to detect violations of memory integrity in the generated code. For
more information, see Ensure memory integrity in the Simulink Graphical User
Interface.

• Responsiveness checks to periodically check for Ctrl+C breaks and refresh graphics.
For more information, see Ensure responsiveness in the Simulink Graphical User
Interface.

Embedded MATLAB Function Blocks Improve Size Propagation Behavior

Heuristics for size propagation have improved for underspecified models. During size
propagation, Embedded MATLAB Function blocks no longer provide default sizes.
Instead, for underspecified models, Simulink gets defaults from other blocks that have
more size information.

Compatibility Considerations

Certain underspecified models that previously ran without error may now generate size
mismatch errors. Examples of underspecified models include:

• Models that contain a cycle in which no block specifies output size
• Models that do not specify the size of input ports

To eliminate size mismatch errors:

• Specify sizes for the input ports of your subsystem or model.
• Specify sizes of all ports on at least one block in any loop in your model.

20-8

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bro1rea-1.html#br72q58-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bro1rea-1.html#br5ye55-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/ug_intropage.html

 Simulink Data Management

Simulink Data Management

New Function Exports Workspace Variables and Values

The new Simulink.saveVars function can save workspace variables and their values
into a MATLAB file. The file containing the data is human-readable and can be
manually edited. If Simulink cannot generate MATLAB code for a workspace variable,
Simulink.saveVars saves that variable into a companion MAT-file rather than a
MATLAB file. Executing the MATLAB file (which also loads any companion MAT file)
restores the saved variables and their values to the workspace. See Simulink.saveVars
for more information.

New Enumerated Constant Block Outputs Enumerated Data

Although the Constant block can output enumerated values, it provides many block
parameters that do not apply to enumerated types, such as Output minimum and
Output maximum. In R2009b, the Sources library includes the Enumerated Constant
block. When you need a block that outputs constant enumerated values, use Enumerated
Constant rather than Constant to avoid seeing irrelevant block parameters.

Enhanced Switch Case Block Supports Enumerated Data

The Switch Case block now supports enumerated data types for the input signal and case
conditions. For more information, see Enumerations and Modeling and the Switch Case
block documentation.

Code for Multiport Switch Block Shows Enumerated Values

In previous releases, generated code for a Multiport Switch block that uses enumerated
data contains the underlying integer for each enumerated value rather than its name. In
R2009b, the code contains the name of each enumerated value rather than its underlying
integer. This change adds readability and facilitates comparing the code with the model,
but has no effect on the behavior of the code. For more information, see Enumerations
and Modeling and Multiport Switch.

20-9

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.savevars.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.savevars.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/constant.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/enumeratedconstant.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/switchcase.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brsaydz-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/switchcase.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/multiportswitch.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brsaydz-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brsaydz-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/multiportswitch.html

R2009b

Data Class Infrastructure Partially Deprecated

Some classes and properties in the Simulink data class infrastructure have been
deprecated in R2009b. See Working with Data for information about Simulink data
classes.

Compatibility Considerations

If you use any of the deprecated constructs, Simulink posts a warning that identifies the
construct and describes one or more techniques for eliminating it. The techniques differ
depending on the construct. You can ignore these warnings in R2009b, but MathWorks
recommends making the described changes now because the deprecated constructs may
be removed from future releases, upgrading the warnings to errors.

Saving Simulation Results to a Single Object

Enhanced sim command that saves all simulation results to a single object for easier
management of simulation results.

Simulation Restart in R2009b

In order to restart an R2009a simulation in R2009b, you should first regenerate the
initial SimState in R2009b.

Compatibility Considerations

The SimState that Simulink saves from a R2009a simulation might be incompatible
with the internal representation of the same model in R2009b. Simulink detects this
incompatibility when the R2009a SimState is used to restart a R2009b simulation. If the
mismatch resides in the model interface only, then Simulink issues a warning. (You can
use the Simulink diagnostic ‘SimState interface checksum mismatch’ to turn off such
warnings or to direct Simulink to report an error.) However, if the mismatch resides
in the structural representation of the model, then Simulink reports an error. To avoid
these errors and warnings, you need to regenerate the initial SimState in R2009b.

Removing Support for Custom Floating-Point Types in Future Release

Support for custom floating-point types, float(TotalBits, ExpBits), will be
removed in a future release.

20-10

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f14-14248.html

 Simulink Data Management

In R2009b, Simulink continues to process these types.

For more information, see float.

20-11

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/float.html

R2009b

Simulink File Management

Removal of Functions

The following functions are no longer available:

• adams.m
• euler.m
• gear.m
• linsim.m
• rk23.m
• rk45.m

Deprecation of SaveAs to R12 and R13

In R2009b, you will no longer be able to use the SaveAs feature to save a model to
releases R12 or R13. You will, however, be able to save models to R12 and R13 using the
command-line. In R2010a, the command-line capability will also be removed.

Improved Behavior of Save_System

When you use the save_system function to save a model to an earlier release, you will
no longer receive a dialog box that indicates that the save was successful.

20-12

 Simulink Signal Management

Simulink Signal Management

Variable-Size Signals

New capability that allows signal sizes to change during execution facilitates modeling
of systems with varying environments, resources, and constraints. For Simulink models
that demonstrate using variable-size signals, see Working with Variable-Size Signals

Simulink Support

• Referenced Model
• Simulink Accelerator and Rapid Accelerator
• Bus Signals
• C-mex S-function
• Level-2 M-file S-function
• Simulink Debugger
• Signal Logging and Loading
• Block Run-Time Object

Simulink Block Support

Support for variable-size signal inputs and outputs in over 40 Simulink blocks including
many blocks from the Math Operations library. For a list of Simulink blocks, see
Simulink Block Support for Variable-Size Signals

20-13

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/br4lzsy.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/br7g0uq-1.html

R2009b

Block Enhancements

New Turnkey PID Controller Blocks for Convenient Controller Simulation
and Tuning

You can implement a continuous- or discrete-time PID controller with just one block by
using one of the new PID Controller and PID Controller (2DOF) blocks. With the new
blocks, you can:

• Configure your controller in any common controller configuration, including PID, PI,
PD, P, and I.

• Tune PID controller gains either manually in the block or automatically in the new
PID Tuner. (PID Tuner requires a Simulink Control Design license.)

• Generate code to implement your controller using any Simulink data type, including
fixed-point data types (requires a Real-Time Workshop license).

You can set many options in the PID Controller and PID Controller (2DOF) blocks,
including:

• Ideal or parallel controller configurations
• Optional output saturation limit with anti-windup circuitry
• Optional signal-tracking mode for bumpless control transfer and multiloop controllers
• Setpoint weighting in the PID Controller (2DOF) block

The blocks are available in the Continuous and Discrete libraries. For more information
on using the blocks, see the PID Controller and PID Controller (2DOF) reference pages.
For more information on tuning the PID blocks, see Automatic PID Tuning in the
Simulink Control Design reference pages.

New Enumerated Constant Block Outputs Enumerated Data

Although the Constant block can output enumerated values, it provides many block
parameters that do not apply to enumerated types, such as Output minimum and
Output maximum. In R2009b, the Sources library includes the Enumerated Constant
block. When you need a block that outputs constant enumerated values, use Enumerated
Constant rather than Constant to avoid seeing irrelevant block parameters.

20-14

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/pidcontroller.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/pidcontroller2dof.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/pidcontroller.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/pidcontroller2dof.html
http://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/br684zf.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/constant.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/enumeratedconstant.html

 Block Enhancements

Enhanced Switch Case Block Supports Enumerated Data

The Switch Case block now supports enumerated data types for the input signal and case
conditions. For more information, see Enumerations and Modeling and the Switch Case
block documentation.

Code for Multiport Switch Block Shows Enumerated Values

In previous releases, generated code for a Multiport Switch block that uses enumerated
data contains the underlying integer for each enumerated value rather than its name. In
R2009b, the code contains the name of each enumerated value rather than its underlying
integer. This change adds readability and facilitates comparing the code with the model,
but has no effect on the behavior of the code. For more information, see Enumerations
and Modeling and Multiport Switch.

Discrete Transfer Fcn Block Has Performance, Data Type, Dimension, and
Complexity Enhancements

The following enhancements apply to the Discrete Transfer Fcn block:

• Improved numerics and run-time performance of outputs and states by reducing the
number of divide operations in the filter to one

• Support for signed fixed-point and signed integer data types
• Support for vector and matrix inputs
• Support for input and coefficients with mixed complexity
• A new Initial states parameter for entering nonzero initial states
• A new Optimize by skipping divide by leading denominator coefficient

(a0) parameter that provides more efficient implementation by eliminating all
divides when the leading denominator coefficient is one. This enhancement provides
optimized block performance.

Compatibility Considerations

Due to these enhancements, you might encounter the following compatibility issues:

• Realization parameter removed

20-15

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/switchcase.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brsaydz-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/switchcase.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/multiportswitch.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brsaydz-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brsaydz-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/multiportswitch.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretetransferfcn.html

R2009b

The Real-Time Workshop software realization parameter has been removed
from this block. You can no longer use the set_param and get_param functions
on this block parameter. The generated code for this block has been improved to
be similar to the former 'sparse' realization when the Optimize by skipping
divide by leading denominator coefficient (a0) parameter is selected, while
maintaining tunability as in the former 'general' realization when the parameter is
not selected.

• State changes

Due to the reduction in the number of divide operations that the block performs, you
might notice that your logged states have changed when the leading denominator
coefficient is not one.

Lookup Table (n-D) Block Supports Parameter Data Types Different from
Signal Data Types

The Lookup Table (n-D) block supports breakpoint data types that differ from input data
types. This enhancement provides these benefits:

• Lower memory requirement for storing breakpoint data that uses a smaller type than
the input signal

• Sharing of prescaled breakpoint data between two Lookup Table (n-D) blocks with
different input data types

• Sharing of custom storage breakpoint data in generated code for blocks with different
input data types

The Lookup Table (n-D) block supports table data types that differ from output data
types. This enhancement provides these benefits:

• Lower memory requirement for storing table data that uses a smaller type than the
output signal

• Sharing of prescaled table data between two Lookup Table (n-D) blocks with different
output data types

• Sharing of custom storage table data in generated code for blocks with different
output data types

The Lookup Table (n-D) block also supports separate data type specification for
intermediate results. This enhancement enables use of a higher precision for internal
computations than for table data or output data.

20-16

 Block Enhancements

For consistency with other lookup table blocks, the Process out-of-range input
parameter prompt is now Action for out-of-range input. Similarly, the command-line
parameter is now ActionForOutOfRangeInput. For backward compatibility, the old
command-line parameter ProcessOutOfRangeInput continues to work. The parameter
settings also remain the same: None, Warning, or Error.

Reduced Memory Use and More Efficient Code for Evenly Spaced
Breakpoints in Prelookup and Lookup Table (n-D) Blocks

For the Prelookup and Lookup Table (n-D) blocks, the generated code now stores only the
first breakpoint, spacing, and number of breakpoints when:

• The breakpoint data is nontunable.
• The index search method is Evenly spaced points.

This enhancement reduces memory use and provides faster code execution. Previously,
the code stored all breakpoint values in a set, regardless of the tunability or spacing of
the breakpoints.

The following enhancements also provide more efficient code for the two blocks:

Block Enhancement for Code Efficiency

Lookup Table (n-D) Removal of unnecessary bit shifts for
calculating the fraction

Prelookup and Lookup Table (n-D) Use of simple division instead of
computation-expensive function calls for
calculating the index and fraction

Math Function Block Computes Reciprocal of Square Root

The Math Function block now supports a new function for computing the reciprocal of
a square root: 1/sqrt. You can use one block instead of two separate blocks for this
computation, resulting in smaller block diagrams.

You can select one of two methods for computing the reciprocal of a square root: Exact
or Newton-Raphson. Both methods support real input and output signals. When you use
the Newton-Raphson method, you can also specify the number of iterations to perform
the algorithm.

20-17

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/mathfunction.html

R2009b

Math Function Block Enhancements for Real-Time Workshop Code
Generation

The Math Function block now supports Real-Time Workshop code generation in these
cases:

• Complex input and output signals for the pow function, for use with floating-point
data types

• Fixed-point data types with fractional slope and nonzero bias for the magnitude^2,
square, and reciprocal functions

Relational Operator Block Detects Signals That Are Infinite, NaN, or Finite

The Relational Operator block now includes isInf, isNaN, and isFinite functions
to detect signals that are infinite, NaN, or finite. These new functions support real
and complex input signals. If you select one of these functions, the block changes
automatically to one-input mode.

Changes in Text and Visibility of Dialog Box Prompts for Easier Use with
Fixed-Point Advisor and Fixed-Point Tool

The Lock output scaling against changes by the autoscaling tool check box is
now Lock output data type setting against changes by the fixed-point tools.
Previously, this check box was visible only if you entered an expression or a fixed-point
data type for the output, such as fixdt(1,16,0). This check box is now visible for any
output data type specification. This enhancement helps you lock the current data type
settings on a dialog box against changes that the Fixed-Point Advisor or Fixed-Point Tool
chooses.

This enhancement applies to the following blocks:

• Abs
• Constant
• Data Store Memory
• Data Type Conversion
• Difference

20-18

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/mathfunction.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/relationaloperator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/abs.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/constant.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/datastorememory.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/datatypeconversion.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/difference.html

 Block Enhancements

• Discrete Derivative
• Discrete-Time Integrator
• Divide
• Dot Product
• Fixed-Point State-Space
• Gain
• Inport
• Lookup Table
• Lookup Table (2-D)
• Lookup Table Dynamic
• Math Function
• MinMax
• Multiport Switch
• Outport
• Prelookup
• Product
• Product of Elements
• Relay
• Repeating Sequence Interpolated
• Repeating Sequence Stair
• Saturation
• Saturation Dynamic
• Signal Specification
• Switch

The Lock scaling against changes by the autoscaling tool check box is now Lock
data type settings against changes by the fixed-point tools. Previously, this check
box was visible only if you entered an expression or a fixed-point data type, such as
fixdt(1,16,0). This check box is now visible for any data type specification. This
enhancement helps you lock the current data type settings on a dialog box against
changes that the Fixed-Point Advisor or Fixed-Point Tool chooses.

20-19

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretederivative.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretetimeintegrator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/divide.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/dotproduct.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/fixedpointstatespace.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/gain.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/inport.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/lookuptabledynamic.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/mathfunction.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/minmax.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/multiportswitch.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/outport.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/prelookup.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/product.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/productofelements.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/relay.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/repeatingsequenceinterpolated.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/repeatingsequencestair.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/saturation.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/saturationdynamic.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/signalspecification.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/switch.html

R2009b

This enhancement applies to the following blocks:

• Discrete FIR Filter
• Interpolation Using Prelookup
• Lookup Table (n-D)
• Sum
• Sum of Elements

Direct Lookup Table (n-D) Block Enhancements

The Direct Lookup Table (n-D) block now supports:

• Direct entry of Number of table dimensions
• Entry of Table data using the Lookup Table Editor

Previously, entering an integer greater than 4 for the Number of table dimensions
required editing Explicit number of table dimensions. This extra parameter no
longer appears on the block dialog box. For backward compatibility, scripts that contain
explicitNumDims continue to work.

The other parameters for the block have changed as follows. For backward compatibility,
the old command-line parameters continue to work.

Prompt on Block Dialog Box Old Command-Line
Parameter

New Command-Line Parameter

Number of table dimensions maskTabDims NumberOfTableDimensions

Inputs select this object
from table

outDims InputsSelectThisObjectFromTable

Make table an input tabIsInput TableIsInput

Table data mxTable Table

Action for out-of-range
input

clipFlag ActionForOutOfRangeInput

Sample time samptime SampleTime

The read-only BlockType parameter has also changed from S-Function to
LookupNDDirect.

20-20

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretefirfilter.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/interpolationusingprelookup.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/sum.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/sumofelements.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/directlookuptablend.html

 Block Enhancements

Compatibility Considerations

In R2009b, signal dimension propagation can behave differently from previous releases.
Your model might not compile under these conditions:

• A Direct Lookup Table (n-D) block is in a source loop.
• Underspecified signal dimensions exist.

If your model does not compile, set dimensions explicitly for underspecified signals.

Unary Minus Block Enhancements

Conversion of the Unary Minus block from a masked S-Function to a core block enables
more efficient simulation of the block.

You can now specify sample time for the block. The Saturate to max or min when
overflows occur check box is now Saturate on integer overflow, and the command-
line parameter is now SaturateOnIntegerOverflow. For backward compatibility, the
old command-line parameter DoSatur continues to work.

The read-only BlockType parameter has also changed from S-Function to
UnaryMinus.

Weighted Sample Time Block Enhancements

Conversions of the Weighted Sample Time and Weighted Sample Time Math blocks from
masked S-Functions to core blocks enable more efficient simulation of the blocks.

The following parameter changes apply to both blocks. For backward compatibility, the
old command-line parameters continue to work.

Old Prompt on
Block Dialog Box

New Prompt on
Block Dialog Box

Old Command-Line
Parameter

New Command-Line Parameter

Output data
type mode

Output data
type

OutputDataType

ScalingMode

OutDataTypeStr

Saturate to max
or min when
overflows occur

Saturate on
integer overflow

DoSatur SaturateOnIntegerOverflow

20-21

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/unaryminus.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/weightedsampletime.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/weightedsampletimemath.html

R2009b

The read-only BlockType parameter has also changed from S-Function to
SampleTimeMath.

Switch Case Block Parameter Change

For the Switch Case block, the command-line parameter for the Show default case
check box is now ShowDefaultCase. For backward compatibility, the old command-line
parameter CaseShowDefault continues to work.

Signal Conversion Block Parameter Change

For the Signal Conversion block, the parameter prompt for the Override optimizations
and always copy signal check box is now Exclude this block from 'Block
reduction' optimization.

Compare To Constant and Compare To Zero Blocks Use New Default
Setting for Zero-Crossing Detection

The Enable zero-crossing detection parameter is now on by default for the Compare
To Constant and Compare To Zero blocks. This change provides consistency with other
blocks that support zero-crossing detection.

Signal Builder Block Change

You can no longer see the system under the Signal Builder block mask. In previous
releases, you could right-click this block and select Look Under Mask.

In the Model Explorer, the Signal Builder block no longer appears in the Model
Hierarchy view. In previous releases, this view was visible.

20-22

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/switchcase.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/signalconversion.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/comparetoconstant.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/comparetoconstant.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/comparetozero.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/signalbuilder.html

 User Interface Enhancements

User Interface Enhancements

Context-Sensitive Help for Simulink Blocks in the Continuous Library

R2009b introduces context-sensitive help for parameters that appear in Simulink blocks
of the Continuous library. This feature provides quick access to a detailed description of
the block parameters.

To use the context-sensitive help:

1 Place your pointer over the label of a parameter and right-click.
2 A What's This? context menu appears.

For example, the following figure shows the What's This? context menu that
appears after right-clicking the Enable zero-crossing detection parameter for the
PID Controller block.

3 Click What's This? A window appears showing a description of the parameter.

Adding Blocks from a Most Frequently Used Blocks List

If you are using the same block repeatedly in a model, then you can save time by using
the:

• Most Frequently Used Blocks tab in the Library Browser
• Most Frequently Used Blocks context menu option in the Model Editor

These features provide quick access to blocks you have added to models frequently. For
details, see Adding Frequently Used Blocks.

Highlighting for Duplicate Inport Blocks

The Highlight to Destination option for a signal provides more information now
for duplicate inport blocks. Applying this option to a signal of an inport block that has
duplicate blocks highlights:

20-23

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/br8p0vj.html#br8p26v

R2009b

• The signal and destination block for that signal
• The signals and destination blocks of the duplicate blocks at the currently opened

level in the model

Using the Model Explorer to Add a Simulink.NumericType Object

You can add a Simulink.NumericType object to the model workspace using the Model
Explorer, provided you do not enable the Is alias option.

An example of when you might use this feature is when you:

• Want to define user-defined data types together in the model
• Do not need to preserve the data type name in the model or in the generated code

Block Output Display Dialog Has OK and Cancel Buttons

The Block Output Display dialog now includes OK and Cancel buttons to specify
whether or not to apply your option settings.

Improved Definition of Hybrid Sample Time

Historically, you could not use the hybrid sample time to effectively identify a multirate
subsystem or block. A subsystem was marked as “hybrid” and colored in yellow whether
it contained two discrete sample times or one discrete sample time and one or more
blocks with constant sample time [inf, 0]. Now, in R2009b, the check for the hybrid
attribute no longer includes constant sample times, thereby improving the usefulness
of the hybrid sample time color in identifying subsystems (and blocks) that are truly
multirate.

Find Option in the Model Advisor

In R2009b, the Model Advisor includes a Find option to help you find checks. The find
option, accessible through the Edit menu, allows you to find checks and folders more
easily by searching names and analysis descriptions.

For more information, see Overview of the Model Advisor Window.

20-24

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.numerictype.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141979.html#f4-142213

R2009a
Version: 7.3

New Features

Bug Fixes

Compatibility Considerations

R2009a

Simulation Performance

Saving and Restoring the Complete SimState

Use the new SimState feature to save the complete simulation state. Unlike the final
states stored in earlier versions of Simulink, the SimState contains the complete
simulation state of the model (including block states that are logged). You can then
restore the state at a later time and continue simulation from the exact instant at which
you stopped the simulation.

Save Simulink Profiler Results

Save the results of the Simulink Profiler and later regenerate reports for review or for
comparison.

21-2

 Component-Based Modeling

Component-Based Modeling

Port Value Displays in Referenced Models

In R2009a, port value displays can appear for blocks in a Normal mode referenced model.
To control port value displays, choose View > Port Values in the model window. For
complete information about port value displays, see Displaying Port Values.

Parallel Builds Enable Faster Diagram Updates for Large Model Reference
Hierarchies In Accelerator Mode

R2009a provides potentially faster diagram updates for models containing large model
reference hierarchies by building referenced models that are configured in Accelerator
mode in parallel whenever possible. For example, updating of each model block can be
distributed across the cores of a multicore host computer.

To take advantage of this feature, Parallel Computing Toolbox software must be licensed
and installed in your development environment. If Parallel Computing Toolbox software
is available, updating a model diagram rebuilds referenced models configured in
Accelerator mode in parallel whenever possible.

For example, to use parallel building for updating a large model reference hierarchy on a
desktop machine with four cores, you could perform the following steps:

1 Issue the MATLAB command 'matlabpool 4' to set up a pool of four MATLAB
workers, one for each core, in the Parallel Computing Toolbox environment.

2 Open your model and make sure that the referenced models are configured in
Accelerator mode.

3 Optionally, inspect the model reference hierarchy. For example, you can use the
Model Dependency Viewer from the Tools menu of Model Explorer to determine,
based on model dependencies, which models will be built in parallel.

4 Update your model. Messages in the MATLAB command window record when each
parallel or serial build starts and finishes.

The performance gain realized by using parallel builds for updating referenced models
depends on several factors, including how many models can be built in parallel for a
given model referencing hierarchy, the size of the referenced models, and host machine
attributes such as amount of RAM and number of cores.

21-3

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f13-87931.html

R2009a

The following notes apply to using parallel builds for updating model reference
hierarchies:

• Parallel builds of referenced models support only local MATLAB workers. They do not
support remote workers in MATLAB Distributed Computing Server™ configurations.

• The host machine should have an appropriate amount of RAM available for
supporting the number of local workers (MATLAB sessions) that you plan to use. For
example, setting matlabpool to 4 results in five MATLAB sessions on your machine,
each using approximately 120 MB of memory at startup.

• The same MATLAB environment must be set up in each MATLAB worker session as
in the MATLAB client session — for example, the same base workspace variables,
MATLAB path settings, and so forth. You can do this using the PreLoadFcn callback
of the top model. Since the top model is loaded with each MATLAB worker session, its
preload function can be used for any MATLAB worker session setup.

21-4

 Embedded MATLAB Function Blocks

Embedded MATLAB Function Blocks

Support for Enumerated Types

Embedded MATLAB Function blocks now support Simulink enumerated types and
generate C code for enumerated data. See Using Enumerated Data in MATLAB Function
Blocks in the Simulink documentation.

Use of Basic Linear Algebra Subprograms (BLAS) Libraries for Speed

Embedded MATLAB Function blocks now use BLAS libraries to speed up low-level
matrix operations during simulation. See Speeding Up Simulation with the Basic Linear
Algebra Subprograms (BLAS) Library in the Simulink documentation.

21-5

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/br127cg.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/br127cg.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/br2c1lz.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/br2c1lz.html

R2009a

Data Management

Signal Can Resolve to at Most One Signal Object

You can resolve a named signal to a signal object. The object can then specify or validate
properties of the signal. For more information, see Simulink.Signal, Using Signal Objects
to Initialize Signals and Discrete States, and Using Signal Objects to Tune Initial Values.

In previous releases, you could associate a signal with multiple signal objects, provided
that the multiple objects specified compatible signal attributes. In R2009a, a signal can
be associated with at most one signal object. The signal can reference the object more
than once, but every reference must resolve to exactly the same object. A different signal
object that has exactly the same properties will not meet the requirement. See Multiple
Signal Objects for more information.

Compatibility Considerations

A compile-time error occurs in R2009a if a model associates more than one signal object
with any signal. To prevent the error, decide which object the signal will use, and delete
or reconfigure all references to any other signal objects so that all remaining references
resolve to the chosen signal object. See Displaying Signal Sources and Destinations for a
description of techniques that you can use to trace the full extent of a signal.

“Signed” Renamed to “Signedness” in the Simulink.NumericType class

In previous releases, the Property dialog of a Simulink.NumericType object whose
Data type mode was any Fixed-point mode showed a property named Signed, which
was a checkbox. Selecting the checkbox specified a signed type; clearing it specified an
unsigned type. The API equivalent of Signed was Signed, a Boolean whose values could
be 1 (signed) or 0 (unsigned).

In R2009a, a property named Signedness replaces Signed in the Property dialog of
a Simulink.NumericType object. You can set Signedness to Signed (the default),
Unsigned, or Auto, which specifies that the object inherits its Signedness. The API
equivalent of Signedness is Signedness, which can be 1 (signed), 0 (unsigned), or
Auto.

For compatibility with existing models, the property Signed remains available in
R2009a. Setting Signed in R2009a sets Signedness accordingly. Accessing Signed in

21-6

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.signal.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bql24_a-1.html#bqm1gpw
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bql24_a-1.html#bqm1gpw
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bql24_a-1.html#bqoqn5v-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.signal.html#bslw27a-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.signal.html#bslw27a-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bq4ic6w-2.html

 Data Management

R2009a returns the value of Signedness if that value is 0 or 1, or generates an error if
the value of Signedness is Auto, because that is not a legal value for Signed.

Do not use the Signed with Simulink.NumericType in new models; use Signedness
instead. See Simulink.NumericType for more information.

“Sign” Renamed to “Signedness” in the Data Type Assistant

For blocks and classes that support fixed-point data types, the property Sign previously
appeared in the Data Type Assistant when the Mode was Fixed point. In R2009a, this
property appears in the Data Type Assistant as Signedness. Only the GUI label of the
property differs; its behavior and API are unchanged in all contexts.

Tab Completion for Enumerated Data Types

Tab completion now works for enumerated data types in the same way that it does for
other MATLAB classes. See Instantiating Enumerations in MATLAB for details.

21-7

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.numerictype.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brscdkf-1.html#bru8abu

R2009a

Simulink File Management

Model Dependencies Tools

Enhanced file dependency analysis has the following new features:

• Files in the Simulink manifest are now recorded relative to a project root folder
making manifests easier to share, compare and read. See Generate Manifests and
Edit Manifests.

• Command-line dependency analysis can now report toolbox dependencies, and
when discovering file dependencies you can optionally generate a manifest file. See
Command-Line Dependency Analysis

21-8

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bq2ifjj-1.html#bq2ik30
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bq2ifjj-1.html#bq2ik39-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bq2ifjj-1.html#brtjgot-1

 Block Enhancements

Block Enhancements

Prelookup and Interpolation Using Prelookup Blocks Support Parameter
Data Types Different from Signal Data Types

The Prelookup block supports breakpoint data types that differ from input data types.
This enhancement provides these benefits:

• Enables lower memory requirement for storing breakpoint data that uses a smaller
type than the input signal

• Enables sharing of prescaled breakpoint data between two Prelookup blocks with
different input data types

• Enables sharing of custom storage breakpoint data in generated code for blocks with
different input data types

The Interpolation Using Prelookup block supports table data types that differ from
output data types. This enhancement provides these benefits:

• Enables lower memory requirement for storing table data that uses a smaller type
than the output signal

• Enables sharing of prescaled table data between two Interpolation Using Prelookup
blocks with different output data types

• Enables sharing of custom storage table data in generated code for blocks with
different output data types

The Interpolation Using Prelookup block also supports separate data type specification
for intermediate results. This enhancement enables use of a greater precision for internal
computations than for table data or output data.

Lookup Table (n-D) and Interpolation Using Prelookup Blocks Perform
Efficient Fixed-Point Interpolations

Whenever possible, Lookup Table (n-D) and Interpolation Using Prelookup blocks use a
faster overflow-free subtraction algorithm for fixed-point interpolation. To achieve this
efficiency, the blocks use a data type of larger container size to perform the overflow-
free subtraction, instead of using control-flow branches as in previous releases. Also, the
generated code for fixed-point interpolation is now smaller.

21-9

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/prelookup.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/interpolationusingprelookup.html

R2009a

Compatibility Considerations

Due to the change in the overflow-free subtraction algorithm, fixed-point interpolation
in Lookup Table (n-D) and Interpolation Using Prelookup blocks might, in a few cases,
introduce different rounding results from previous releases. Both simulation and
code generation use the new overflow-free algorithm, so they have the same rounding
behavior and provide bit-true consistency.

Expanded Support for Simplest Rounding Mode to Maximize Block
Efficiency

In R2009a, support for the Simplest rounding mode has been expanded to enable more
blocks to handle mixed floating-point and fixed-point data types:

• Abs
• Data Type Conversion Inherited
• Difference
• Discrete Derivative
• Discrete FIR Filter
• Discrete-Time Integrator
• Dot Product
• Fixed-Point State-Space
• Gain
• Index Vector
• Lookup Table (n-D)
• Math Function (for the magnitude^2, reciprocal, square, and sqrt functions)
• MinMax
• Multiport Switch
• Saturation
• Saturation Dynamic
• Sum
• Switch
• Transfer Fcn Direct Form II

21-10

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/abs.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/datatypeconversioninherited.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/difference.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretederivative.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretefirfilter.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretetimeintegrator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/dotproduct.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/fixedpointstatespace.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/gain.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/indexvector.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/mathfunction.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/minmax.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/multiportswitch.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/saturation.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/saturationdynamic.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/sum.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/switch.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/transferfcndirectformii.html

 Block Enhancements

• Transfer Fcn Direct Form II Time Varying
• Transfer Fcn First Order
• Transfer Fcn Lead or Lag
• Transfer Fcn Real Zero
• Weighted Sample Time
• Weighted Sample Time Math

For more information, see Rounding Mode: Simplest.

New Rounding Modes Added to Multiple Blocks

For the following Simulink blocks, the dialog box now displays Convergent and Round
as possible rounding modes. These modes enable numerical agreement with embedded
hardware and MATLAB results.

• Abs
• Data Type Conversion
• Data Type Conversion Inherited
• Difference
• Discrete Derivative
• Discrete FIR Filter
• Discrete-Time Integrator
• Divide
• Dot Product
• Fixed-Point State-Space
• Gain
• Index Vector
• Interpolation Using Prelookup
• Lookup Table
• Lookup Table (2-D)
• Lookup Table (n-D)
• Lookup Table Dynamic
• Math Function (for the magnitude^2, reciprocal, square, and sqrt functions)

21-11

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/transferfcndirectformiitimevarying.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/transferfcnfirstorder.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/transferfcnleadorlag.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/transferfcnrealzero.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/weightedsampletime.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/weightedsampletimemath.html
http://www.mathworks.com/help/releases/R2012a/toolbox/fixpoint/ug/f14935.html#brzf9c4-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/abs.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/datatypeconversion.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/datatypeconversioninherited.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/difference.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretederivative.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretefirfilter.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretetimeintegrator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/divide.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/dotproduct.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/fixedpointstatespace.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/gain.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/indexvector.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/interpolationusingprelookup.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/lookuptabledynamic.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/mathfunction.html

R2009a

• MinMax
• Multiport Switch
• Prelookup
• Product
• Product of Elements
• Saturation
• Saturation Dynamic
• Sum
• Switch
• Transfer Fcn Direct Form II
• Transfer Fcn Direct Form II Time Varying
• Transfer Fcn First Order
• Transfer Fcn Lead or Lag
• Transfer Fcn Real Zero
• Weighted Sample Time
• Weighted Sample Time Math

In the dialog box for these blocks, the field Round integer calculations toward has
been renamed Integer rounding mode. The command-line parameter remains the
same.

For more information, see Rounding Mode: Convergent and Rounding Mode: Round in
the Fixed-Point Toolbox™ documentation.

Compatibility Considerations

If you use an earlier version of Simulink software to open a model that uses the
Convergent or Round rounding mode, the mode changes automatically to Nearest.

Lookup Table (n-D) Block Performs Faster Calculation of Index and
Fraction for Power of 2 Evenly-Spaced Breakpoint Data

For power of 2 evenly-spaced breakpoint data, the Lookup Table (n-D) block uses bit
shifts to calculate the index and fraction, instead of division. This enhancement provides
these benefits:

21-12

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/minmax.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/multiportswitch.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/prelookup.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/product.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/productofelements.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/saturation.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/saturationdynamic.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/sum.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/switch.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/transferfcndirectformii.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/transferfcndirectformiitimevarying.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/transferfcnfirstorder.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/transferfcnleadorlag.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/transferfcnrealzero.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/weightedsampletime.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/weightedsampletimemath.html
http://www.mathworks.com/help/releases/R2012a/toolbox/fixpoint/ug/f14935.html#brzf86r
http://www.mathworks.com/help/releases/R2012a/toolbox/fixpoint/ug/f14935.html#brzf96w

 Block Enhancements

• Faster calculation of index and fraction for power of 2 evenly-spaced breakpoint data
• Smaller size of generated code for the Lookup Table (n-D) block

Discrete FIR Filter Block Supports More Filter Structures

The following filter structures have been added to the Discrete FIR Filter block:

• Direct form symmetric

• Direct form antisymmetric

• Direct form transposed

• Lattice MA

Running a model with these filter structures requires a Signal Processing Blockset
license.

Discrete Filter Block Performance, Data Type, Dimension, and Complexity
Enhancements

The following enhancements have been made to the Discrete Filter block:

• Improved numerics and run-time performance of outputs and states by reducing the
number of divide operations in the filter to at most one

• Support for signed fixed-point and integer data types
• Support for vector and matrix inputs
• Support for complex inputs and filter coefficients, where inputs and coefficients can

each be real or complex, independently of the other
• A new Initial states parameter allows you to enter non-zero initial states
• A new Leading denominator coefficient equals 1 parameter provides a more

efficient implementation by eliminating all divides when the leading denominator
coefficient is one

Compatibility Considerations

Due to these enhancements, you might encounter the compatibility issues in the
following sections.

21-13

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretefirfilter.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretefilter.html

R2009a

Realization parameter removed. The Real-Time Workshop software realization
parameter has been removed from this block. You can no longer use the set_param and
get_param functions on this block parameter. The generated code for this block has been
improved to be similar to the former 'sparse' realization, while maintaining tunability
as in the former 'general' realization.

State changes. Due to the reduction in the number of divide operations performed
by the block, you might notice that your logged states have changed when the leading
denominator coefficient is not one.

MinMax Block Performs More Efficient and Accurate Comparison
Operations

For multiple inputs with mixed floating-point and fixed-point data types, the MinMax
block selects an appropriate data type for performing comparison operations, instead
of using the output data type for all comparisons, as in previous releases. This
enhancement provides these benefits:

• Faster comparison operations, with fewer fixed-point overflows
• Smaller size of generated code for the MinMax block

Logical Operator Block Supports NXOR Boolean Operator

In R2009a, the Logical Operator block has been enhanced with a new NXOR Boolean
operator. When you select this operator, the block returns TRUE when an even number
of inputs are TRUE. Similarly, the block returns FALSE when an even number of inputs
are FALSE.

Use NXOR to replace serial XOR and NOT operations in a model.

Discrete-Time Integrator Block Uses Efficient Integration-Limiting
Algorithm for Forward Euler Method

When you select the Limit output check box for the Forward Euler method, the
Discrete-Time Integrator block uses only one saturation when a second saturation is
unnecessary. This change in the integration-limiting algorithm provides these benefits:

• Faster integration

21-14

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/minmax.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/logicaloperator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretetimeintegrator.html

 Block Enhancements

• Smaller size of generated code for the Discrete-Time Integrator block

Dot Product Block Converted from S-Function to Core Block

Conversion of the Dot Product block from a masked S-Function to a core block enables
more efficient simulation and better handling of the block in Simulink models.

Due to this conversion, you can specify sample time and values for the output minimum
and maximum for the Dot Product block. The read-only BlockType parameter has also
changed from S-Function to DotProduct.

Compatibility Considerations

In R2009a, signal dimension propagation might behave differently from previous
releases. As a result, your model might not compile under these conditions:

• Your model contains a Dot Product block in a source loop.
• Your model has underspecified signal dimensions.

If your model does not compile, set dimensions for signals that are not fully specified.

For example, your model might not compile in this case:

• Your model contains a Transfer Fcn Direct Form II Time Varying block, which is a
masked S-Function with a Dot Product block in a source loop.

• The second and third input ports of the Transfer Fcn Direct Form II Time Varying
block are unconnected, which results in underspecified signal dimensions.

To ensure that your model compiles in this case, connect Constant blocks to the second
and third input ports of the Transfer Fcn Direct Form II Time Varying block and specify
the signal dimensions for both ports explicitly.

Pulse Generator Block Uses New Default Values for Period and Pulse
Width

For the Pulse Generator block, the default Period value has changed from 2 to 10, and
the default Pulse Width value has changed from 50 to 5. These changes enable easier
transitions between time-based and sample-based mode for the pulse type.

21-15

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/dotproduct.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/transferfcndirectformiitimevarying.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/pulsegenerator.html

R2009a

Random Number, Uniform Random Number, and Unit Delay Blocks Use
New Default Values for Sample Time

The default Sample time values for the Random Number, Uniform Random Number,
and Unit Delay blocks have changed:

• The default Sample time value for the Random Number and Uniform Random
Number blocks has changed from 0 to 0.1.

• The default Sample time value for the Unit Delay block has changed from 1 to –1.

Trigonometric Function Block Provides Better Support of Accelerator Mode

The Trigonometric Function block now supports Accelerator mode for all cases with real
inputs and Normal mode support. For more information about simulation modes, see
Accelerating Models in the Simulink User's Guide.

Reshape Block Enhanced with New Input Port

The Reshape block Output dimensionality parameter has a new option, Derive
from reference input port. This option creates a second input port, Ref, on the
block and derives the dimensions of the output signal from the dimensions of the signal
input to the Ref input port. Similarly, the Reshape block command-line parameter,
OutputDimensionality, has the new option, Derive from reference input
port.

Multidimensional Signals in Simulink Blocks

The following blocks were updated to support multidimensional signals. For more
information, see Signal Dimensions in the Simulink User's Guide.

• Assertion
• Extract Bits
• Check Discrete Gradient
• Check Dynamic Gap
• Check Dynamic Lower Bound
• Check Dynamic Range
• Check Dynamic Upper Bound

21-16

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/randomnumber.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/uniformrandomnumber.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/unitdelay.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/trigonometricfunction.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f0-22210.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/reshape.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bst2z3h-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/assertion.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/extractbits.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/checkdiscretegradient.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/checkdynamicgap.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/checkdynamiclowerbound.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/checkdynamicrange.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/checkdynamicupperbound.html

 Block Enhancements

• Check Input Resolution
• Check Static Gap
• Check Static Lower Bound
• Check Static Range
• Check Static Upper Bound
• Data Type Scaling Strip
• Wrap to Zero

Subsystem Blocks Enhanced with Read-Only Property That Indicates
Virtual Status

The following subsystem blocks now have the property, IsSubsystemVirtual. This
read-only property returns a Boolean value, on or off, to indicate if a subsystem is
virtual.

• Atomic Subsystem
• Code Reuse Subsystem
• Configurable Subsystem
• Enabled and Triggered Subsystem
• Enabled Subsystem
• For Iterator Subsystem
• Function-Call Subsystem
• If Action Subsystem
• Subsystem
• Switch Case Action Subsystem
• Triggered Subsystem
• While Iterator Subsystem

21-17

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/checkinputresolution.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/checkstaticgap.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/checkstaticlowerbound.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/checkstaticrange.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/checkstaticupperbound.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/datatypescalingstrip.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/wraptozero.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/atomicsubsystem.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/codereusesubsystem.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/configurablesubsystem.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/enabledandtriggeredsubsystem.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/enabledsubsystem.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/foriteratorsubsystem.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/functioncallsubsystem.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/ifactionsubsystem.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/subsystem.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/switchcaseactionsubsystem.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/triggeredsubsystem.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/whileiteratorsubsystem.html

R2009a

User Interface Enhancements

Port Value Displays in Referenced Models

In R2009a, port value displays can appear for blocks in a Normal mode referenced model.
To control port value displays, choose View > Port Values in the model window. For
complete information about port value displays, see Displaying Port Values.

Print Sample Time Legend

Print the Sample Time Legend either as an option of the block diagram print dialog box
or directly from the legend. In either case, the legend will print on a separate sheet of
paper. For more information, see Print Sample Time Legend.

M-API for Access to Compiled Sample Time Information

New MATLAB API provides access to the compiled sample time data, color, and
annotations for a specific block or the entire block diagram directly from M code.

Model Advisor Report Enhancements

In R2009a, the Model Advisor report is enhanced with:

• The ability to save the report to a location that you specify.
• Improved readability, including the ability to:

• Filter the report to view results according to the result status. For example, you
can now filter the report to show errors and warnings only.

• Collapse and expand the folder view in the report.
• View a summary of results for each folder in the report.

See Consulting the Model Advisor in the Simulink User's Guide.

Counterclockwise Block Rotation

This release lets you rotate blocks counterclockwise as well as clockwise (see How to
Rotate a Block for more information).

21-18

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f13-87931.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f2-82944.html#br1cce_
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141979.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f13-82580.html#f13-83952
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f13-82580.html#f13-83952

 User Interface Enhancements

Physical Port Rotation for Masked Blocks

This release lets you specify that the ports of a masked block not be repositioned after a
clockwise rotation to maintain a left-to-right and top-to-bottom numbering of the ports.
This enhancement facilitates use of masked blocks in mechanical systems, hydraulic
systems, and other modeling applications where block diagrams do not have a preferred
orientation (see Port Rotation Type for more information.)

Smart Guides

In R2009a, when you drag a block, Simulink draws lines, called smart guides, that
indicate when the block's ports, center, and edges align with the ports, centers, and edges
of other blocks in the same diagram. This helps you create well-laid-out diagrams (see
Smart Guides for more information).

Customizing the Library Browser's User Interface

Release 2009a lets you customize the Library Browser's user interface. You can change
the order in which libraries appear in the Library Browser, disable or hide libraries,
sublibraries, and blocks, and add, disable, or hide items on the Library Browser's menus.
See Customizing the Library Browser for more information.

Subsystem Creation Command

This release adds a command, Simulink.BlockDiagram.createSubSystem, that creates a
subsystem from a specified group of blocks.

Removal of Lookup Table Designer from the Lookup Table Editor

In R2009a, the Lookup Table Designer is no longer available in the Lookup Table Editor.

Compatibility Considerations

Previously, you could select Edit > Design Table in the Lookup Table Editor to launch
the Lookup Table Designer. In R2009a, this menu item is no longer available.

21-19

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f13-82580.html#brzr9ak-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f13-82458.html#br1aik8
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/br1calz.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.blockdiagram.createsubsystem.html

R2009a

S-Functions

Level-1 Fortran S-Functions

In this release, if you attempt to compile or simulate a model with a Level-1 Fortran
S-function, you will receive an error due to the use of the newly deprecated function
'MXCREATEFULL' within the Fortran S-function wrapper 'simulink.F'. If your
S-function does not explicitly use 'MXCREATEFULL', simply recompile the S-
function. If your S-function uses 'MXCREATEFULL', replace each instance with
'MXCREATEDOUBLEMATRIX' and recompile the S-function.

21-20

R2008b
Version: 7.2

New Features

Bug Fixes

Compatibility Considerations

R2008b

Simulation Performance

Parallel Simulations in Rapid Accelerator Mode

Simulink now has the capability to run parallel simulations in Rapid Accelerator mode
using parfor on prebuilt Simulink models.

You can now run parallel simulations in Rapid Accelerator mode with different external
inputs and tunable parameters. The sim command can be called from a parfor loop if
the model does not require a rebuild.

For more information, see Running a Simulation Programmatically.

Improved Rebuild Mechanism in Rapid Accelerator Mode

Simulink now has enhanced tuning of the solver and logging parameters in Rapid
Accelerator mode without requiring a rebuild.

An improved rebuild mechanism ensures that the model does not rebuild when
you change block diagram parameters (e.g., stop time, solver tolerances, etc.). This
enhancement significantly decreases the time for simulation in Rapid Accelerator mode.

Data Type Size Limit on Accelerated Simulation Removed

In previous releases, accelerated simulation was not supported for models that use
integer or fixed-point data types greater than 32 bits in length. In this release, the
acceleration limit on integer and fixed-point data type size has increased to 128 bits, the
same as the limit for normal-mode, i.e., unaccelerated simulation.

New Initialization Behavior in Conditional, Action, and Iterator
Subsystems

For releases prior to 2008b, at the simulation start time, Simulink initializes all blocks
unconditionally and subsystems cannot reset the states. Release 2008b introduces
behavior that mirrors the behavior of Real-Time Workshop. For normal simulation mode,
the Simulink block initialization method (mdlInitializeConditions) can be called more
than once at the start time if:

• The block is contained within a Conditional, Action, or Iterator subsystem.

22-2

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/br8i6q8.html

 Simulation Performance

• The subsystem is configured to reset states when enabled (or triggered); and the
subsystem is enabled (or triggered) at the start time.

This new initialization behavior has the following effect on S-functions:

• If you need to ensure that the initialization code in the mdlInitializeConditions
function runs only once, then move this initialization code into the mdlStart method.
MathWorks recommends this code change as a best practice.

• The change to the block initialization method, as described above, exposed a bug in
the S-function macro ssIsFirstInitCond for applications involving an S-function within
a Conditional, Action or Iterator subsystem. This bug has been fixed in R2008b.

To determine if you consequently need to update your Simulink S-functions for
compatibility, compare the simulation results from R2007b or an earlier release
with those of R2008b. If they differ at the start time, ssIsFirstInitCond is running
more than once and you must regenerate and recompile the appropriate Simulink S-
functions.

For Real-Time Workshop, you must regenerate and recompile all S-function targets
and any Real-Time Workshop target for which the absolute time is turned on. (If
a third-party vendor developed your S-functions, have the vendor regenerate and
recompile them for you. The vendor can use the SLDiagnostics feature to identify all
S-functions in a model.)

22-3

R2008b

Component-Based Modeling

Processor-in-the-Loop Mode in Model Block

In R2008b, Simulink has a new Model block simulation mode for processor-in-the-
loop (PIL) verification of generated code. This feature requires Real-Time Workshop
Embedded Coder software. The feature lets you test the automatically generated and
cross-compiled object code on your embedded processor by easily switching between
Normal, Accelerator, and PIL simulation modes in your original model. You can reuse
test suites, resulting in faster iteration between model development and generated code
verification. For more information, see Referenced Model Simulation Modes.

Conditionally Executed Subsystem Initial Conditions

R2008b of Simulink includes enhanced handling of initial conditions for conditionally
executed subsystems, Merge blocks, and Discrete-Time Integrator blocks, improving
consistency of simulation results.

This feature allows you to select simplified initialization mode for conditionally executed
subsystems, Merge blocks, subsystem elapsed time, and Discrete-Time Integrator blocks.
The simplified initialization improves the consistency of simulation results, especially
for models that do not specify initial conditions for conditional subsystem output ports,
and for models that have conditionally executed subsystem output ports connected to S-
functions.

Note: To use the new simplified initialization mode, you must activate this feature.

Activating This Feature for New Models

For new models, you can activate this feature as follows:

1 In the model window, select Simulation > Configuration Parameters.

The Configuration Parameters dialog box opens.
2 Select Diagnostics > Data Validity.

The Data Validity Diagnostics pane opens.

22-4

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsp24op-1.html

 Component-Based Modeling

3 In the Model Initialization section, set Underspecified initialization detection to
Simplified.

4 Select Diagnostics > Connectivity.

The Connectivity Diagnostics pane opens.
5 Set Mux blocks used to create bus signals to error.
6 Set Bus signal treated as vector to error.
7 Click OK.

For more information, see Underspecified initialization detection.

Migrating Existing Models

For existing models, MathWorks recommends using the Model Advisor to migrate your
model to the new simplified initialization mode settings.

To migrate an existing model:

1 In the model window, select Simulation > Configuration Parameters.

The Configuration Parameters dialog box opens.
2 Select Diagnostics > Data Validity.

The Data Validity Diagnostics pane opens.
3 In the Merge Block section, set Detect multiple driving blocks executing at the

same time step to error.
4 Click OK.
5 Simulate the model and ensure that it runs without errors.
6 Select Tools > Model Advisor.

The Model Advisor opens.
7 In the Model Advisor Task Manager, select By Product > Simulink.
8 Run Check bus usage in the Model Advisor.
9 Run Check consistency of initialization parameters for Outport and Merge

blocks in the Model Advisor.
10 After you have resolved any errors identified by this check, click Proceed to migrate

your model to simplified initialization mode.

22-5

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq8t6qh.html#brphwdw-1

R2008b

For information on using the Model Advisor, see Consulting the Model Advisor in the
Simulink User's Guide.

For information on the Model Advisor checks, see Check consistency of initialization
parameters for Outport and Merge blocks.

Compatibility Considerations

Activating this feature can cause differences in simulation results, when compared to
previous versions. Since you must opt-in to this feature before any changes are made,
there are no issues for existing models. However, MathWorks recommends that you
backup existing models before you migrate them, in case you want to return to the
original behavior.

Model Block Input Enhancement

Model block inputs can now be local and reusable. This capability reduces global data
usage and data copying when interfacing with code from a referenced model, which can
reduce memory usage during simulation and increase the efficiency of generated code.
This enhancement is always relevant, so no configuration parameter is necessary or
provided to control it.

One Parameter Controls Accelerator Mode Build Verbosity

In previous releases, the ModelReferenceSimTargetVerbose parameter
controlled verbosity when a referenced model was built for execution in Accelerator
mode, as specified by the Model block's Simulation mode parameter. The
ModelReferenceSimTargetVerbose had no GUI equivalent. See Referenced Model
Simulation Modes and the Model block documentation for more information.

A different parameter, AccelVerboseBuild, controls the verbosity when a model
is built in Simulink Accelerator mode or Rapid Accelerator mode, as specified in the
Simulation menu. See Accelerating Models for more information. The GUI equivalent of
the AccelVerboseBuild parameter is Configuration Parameters > Optimization >
Verbose accelerator builds. See Verbose accelerator builds for more information.

All types of accelerated simulation entail code generation (though the code is not visible
to the user) and the two verbosity parameters control whether a detailed account of the
code generation process appears in the MATLAB Command Window. However, providing
separate verbosity parameters for the two cases was unnecessary.

22-6

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141979.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/bq6d4aa-1.html#brtndjk
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/bq6d4aa-1.html#brtndjk
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsp24op-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsp24op-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/model.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f0-22210.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq7cqu2-1.html#brjjciu

 Component-Based Modeling

In R2008b, the ModelReferenceSimTargetVerbose parameter is deprecated and
has no effect. The AccelVerboseBuild parameter (Configuration Parameters >
Optimization > Verbose accelerator builds) now controls the verbosity for Simulink
Accelerator mode, referenced model Accelerator mode, and Rapid Accelerator mode.

Another parameter, RTWVerbose (Configuration Parameters > Real-Time
Workshop > Debug > Verbose build) controls the verbosity of Real-Time
Workshop code generation. This parameter is unaffected by the changes to
ModelReferenceSimTargetVerbose and AccelVerboseBuild.

Compatibility Considerations

In R2008b, trying to set ModelReferenceSimTargetVerbose generates a warning
message and has no effect on verbosity. The warning says to use AccelVerboseBuild
instead. The default for AccelVerboseBuild is 'off'.

A model saved in R2008b will not include the ModelReferenceSimTargetVerbose
parameter. An R2008b model saved to an earlier Simulink version that supports
ModelReferenceSimTargetVerbose will include that parameter, giving it the same
value that AccelVerboseBuild has in the R2008b version.

The effect of loading a model from an earlier Simulink version into R2008b depends on
the source version:

• Prior to R14: Neither parameter exists, so no compatibility consideration arises.
• R14 – R2006b: Only ModelReferenceSimTargetVerbose exists. Copy its value to

AccelVerboseBuild.
• R2007a: Both parameters exist but neither has a GUI equivalent. Ignore the value of

ModelReferenceSimTargetVerbose and post no warning.
• R2007b – R2008a: Both parameters exist and AccelVerboseBuild and has a GUI

equivalent. If ModelReferenceSimTargetVerbose is 'on', post a warning to use
AccelVerboseBuild instead.

22-7

R2008b

Embedded MATLAB Function Blocks

Support for Fixed-Point Word Lengths Up to 128 Bits

Embedded MATLAB Function blocks now support up to 128 bits of fixed-point precision.
This increase in maximum precision from 32 to 128 bits supports generating efficient
code for targets with non-standard word sizes and allows Embedded MATLAB Function
blocks to work with large fixed-point signals.

Enhanced Simulation and Code Generation Options for Embedded
MATLAB Function Blocks

You can now specify embeddable code generation options from the Embedded MATLAB
Editor using a new menu item: Tools > Open RTW Target. Simulation options continue
to be available from Tools > Open Simulation Target.

In addition, simulation and embeddable code generation options now appear in a single
dialog box. For details, see “Unified Simulation and Embeddable Code Generation
Options” on page 22-20.

Data Type Override Now Works Consistently on Outputs

When you enable data type override for Embedded MATLAB Function blocks, outputs
with explicit and inherited types are converted to the override type. For example, if
you set data type override to true singles, the Embedded MATLAB Function block
converts all outputs to single type and propagates the override type to downstream
blocks.

In previous releases, Embedded MATLAB Function blocks did not apply data type
override to outputs with inherited types. Instead, the inherited type was preserved even
if it did not match the override type, sometimes causing errors during simulation.

Compatibility Considerations

Applying data type override rules to outputs with inherited types may introduce the
following compatibility issues:

• Downstream Embedded MATLAB Function blocks must be able to accept the
propagated override type. Therefore, you must allow data type override for

22-8

 Embedded MATLAB Function Blocks

downstream blocks for which you set output type explicitly. Otherwise, you may not
be able to simulate your model.

• You might get unexpected simulation results if the propagated type uses less
precision than the original type.

Improperly-Scaled Fixed-Point Relational Operators Now Match MATLAB
Results

When evaluating relational operators, Embedded MATLAB Function blocks compute a
common type that encompasses both input operands. In previous releases, if the common
type required more than 32 bits, Embedded MATLAB Function blocks may have given
different answers from MATLAB. Now, Embedded MATLAB Function blocks give the
same answers as MATLAB.

Compatibility Considerations

Some relational operators generate multi-word code even if one of the fixed-point
operands is not a multi-word value. To work around this issue, cast both operands to the
same Fixed-Point Toolbox type (using the same scaling method and properties).

22-9

R2008b

Data Management

Support for Enumerated Data Types

Simulink models now support enumerated data types. For details, see:

• Enumerations and Modeling
• Using Enumerated Data in Stateflow Charts in the Stateflow documentation
• Enumerations in the Real-Time Workshop documentation

Simulink Bus Editor Enhancements

The Simulink Bus Editor can now filter displayed bus objects by either name or
relationship. See Filtering Displayed Bus Objects for details.

You can now fully customize the export and import capabilities of the Simulink Bus
Editor. See Customizing Bus Object Import and Export for details.

New Model Advisor Check for Data Store Memory Usage

A new Model Advisor check posts advice and warnings about the use of Data Store
Memory, Data Store Read, and Data Store Write blocks. See Check Data Store Memory
blocks for multitasking, strong typing, and shadowing issues for details.

22-10

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brsaydz-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/brp7mn3.html
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/brs11jy-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brq2x79-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brq2t2e.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/datastorememory.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/datastorememory.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/datastoreread.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/datastorewrite.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/bq6d4aa-1.html#brt5usf-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/bq6d4aa-1.html#brt5usf-1

 Simulink File Management

Simulink File Management

Model Dependencies Tools

Enhanced file dependency analysis can now:

• Find system target files
• Analyze STF_make_rtw_hook functions
• Analyze all configuration sets, not just the active set.

See Scope of Dependency Analysis in the Simulink User's Guide.

22-11

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bq2ifjj-1.html#brbi17x

R2008b

Block Enhancements

Trigonometric Function Block

R2008b provides an enhanced Trigonometric Function block to:

• Support sincos
• Provide greater floating-point consistency

Math Function Block

In Simulink 2008b, an enhanced Math Function block provides greater floating-point
consistency.

Merge Block

R2008b provides enhanced handling of initial conditions for the Merge block and thus
improves the consistency of simulation results.

For more information, see “Conditionally Executed Subsystem Initial Conditions” on
page 22-4.

Discrete-Time Integrator Block

R2008b provides an enhanced handling of initial conditions for the Discrete-Time
Integrator block and thereby improves the consistency of simulation results.

For more information, see “Conditionally Executed Subsystem Initial Conditions” on
page 22-4.

Modifying a Link to a Library Block in a Callback Function Can Cause
Illegal Modification Errors

In this release, Simulink software can signal an error if a block callback function, e.g.,
CopyFcn, modifies a link to a library block. For example, an error occurs if you attempt
to copy a library link to a self-modifying masked subsystem whose CopyFcn deletes a

22-12

 Block Enhancements

block contained by the subsystem. This change means that you cannot use block callback
functions to create self-modifying library blocks. Mask initialization code for a library
block is the only code allowed to modify the block.

Compatibility Considerations

Previous releases allowed use of block callback functions to create self-modifying library
blocks. Opening, editing, or running models that contain links to such blocks can cause
illegal modification errors in the current release. As a temporary work around, you can
break any links in your model to a library block that uses callback functions to modify
itself. The best long-term solution is to move the self-modification code to the block's
mask initialization section.

Random Number Block

In the dialog box for the Random Number block, the field Initial Seed has been renamed
Seed. The command-line parameter remains the same.

Signal Generator Block

The Signal Generator block now supports multidimensional signals. For a list of blocks
that support multidimensional signals, see Signal Dimensions in the Simulink User's
Guide.

Sum Block

The accumulator of the Sum block now applies for all input signals of any data type (for
example, double, single, integer, and fixed-point). In previous releases, the accumulator
of this block was limited to inputs and outputs of only integer or fixed-point data types.

Switch Block

The Switch block now supports the immediate back propagation of a known output data
type to the first and third input ports. This occurs when you set the Output data type
parameter to Inherit: Inherit via internal rule and select the Require all
data port inputs to have the same data type check box. In previous releases, this
back propagation did not occur immediately.

22-13

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/randomnumber.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/signalgenerator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bst2z3h-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/sum.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/switch.html

R2008b

Uniform Random Number Block

In the dialog box for the Uniform Random Number block, the field Initial Seed has been
renamed Seed. The command-line parameter remains the same.

22-14

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/uniformrandomnumber.html

 User Interface Enhancements

User Interface Enhancements

Sample Time

The display of sample time information has been expanded to include:

• Signal lines labeling with new color-independent Annotations
• A new Sample Time Legend maps the sample time Colors and Annotations to

sample times.
• A distinct color for indicating that a block and signal are asynchronous.

The section “Modeling and Simulation of Discrete Systems” has been renamed “Working
with Sample Times” and has been significantly expanded to provide a comprehensive
review of sample times and a discussion on the new Sample Time Legend and Sample
Time Display features. For more information, see Working with Sample Times.

Model Advisor

In R2008b, the Model Advisor is enhanced with:

• A model and data restore point that provides you with the ability to revert changes
made in response to advice from the Model Advisor

• Context-sensitive help available for Model Advisor checks
• Tristate check boxes that visually indicate selected and cleared checks in folders
• A system selector for choosing the system level that the Model Advisor checks

See Consulting the Model Advisor in the Simulink User's Guide.

“What’s This?” Context-Sensitive Help for Commonly Used Blocks

R2008b introduces context-sensitive help for parameters that appear in the following
commonly used blocks in Simulink:
Bus Creator
Bus Selector
Constant
Data Type Conversion
Demux

22-15

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/br09i6c.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141979.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html

R2008b

Discrete-Time Integrator
Gain
Inport
Integrator
Logical Operator
Mux
Outport
Product
Relational Operator
Saturation
Subsystem
Sum
Switch
Terminator
Unit Delay

This feature provides quick access to a detailed description of the parameters, saving you
the time it would take to find the information in the Help browser.

To use the "What's This?" help, do the following:

1 Place your cursor over the label of a parameter.
2 Right-click. A What's This? context menu appears.

For example, the following figure shows the What's This? context menu appearing
after right-clicking the Multiplication parameter for the Gain block.

3 Click What's This? A context-sensitive help window appears showing a description
of the parameter.

Compact Icon Option Displays More Blocks in Library Browser

This release introduces a compact icon option that maximizes the number of blocks and
libraries visible in the Library Browser's Library pane without scrolling (see Library
Pane).

22-16

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/brjomgu.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/brjomgu.html

 User Interface Enhancements

Signal Logging and Test Points Are Controlled Independently

In previous releases, a signal could be logged only if it was also a test point. Therefore,
selecting Log signal data in the Signal Properties dialog box automatically selected
Test point, and disabled it so that it could not be cleared. However, a signal can be
a test point without being logged, so clearing Log signal data did not automatically
clear Test point. The same asymmetric behavior occurred programmatically with the
underlying DataLogging and TestPoint parameters.

In R2008b, no connection exists between enabling logging for a signal and making the
signal a test point. Either, both, or neither capability can be enabled for any signal.
Selecting and clearing Log signal data therefore has no effect on the setting of Test
point, and similarly for the underlying parameters. See Exporting Signal Data Using
Signal Logging and Working with Test Points for more information.

To reflect the independence of logging and test points, the command Test Point
Indicators in the Simulink Format > Port/Signal Displays menu has been renamed
Testpoint/Logging Indicators. The effect of the command, the graphical indicators
displayed, and the meaning of the underlying parameter ShowTestPointIcons, are all
unchanged.

Compatibility Considerations

Scripts and practices that relied on Log signal data to automatically set a test point
must be changed to set the test point explicitly. The relevant set_param commands are:

set_param(PortHandle(n),'DataLogging','on')

set_param(PortHandle(n),'TestPoint','on')

To disable either capability, set the relevant parameter to 'off'. See Enabling Logging
for a Signal for an example.

Signal Logging Consistently Retains Duplicate Signal Regions

A virtual signal is a signal that graphically represents other signals or parts of other
signals. Virtual signals are purely graphical entities; they have no functional or
mathematical significance. The nonvirtual components of a virtual signal are called
regions. For example, if Mux block (which is a virtual block) inputs two nonvirtual
signals, the block outputs a virtual signal that has two regions. See Virtual Signals and
Mux Signals for more information.

22-17

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsxca4i-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsxca4i-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f15-109572.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsw9mxm.html#bsw9nl4-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsw9mxm.html#bsw9nl4-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bs9gzfb.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bs9gzfb.html#brp5v4k-1

R2008b

In previous releases, when a virtual signal contains duplicate regions, signal logging
excluded all but one of the duplicates in some contexts, but included all of the duplicates
in other contexts, giving inconsistent results. For example, if the same nonvirtual signal
is connected to two input ports of a Mux block, that one signal is the source of two regions
in the Mux block output. Previously, if that output was being logged in Normal mode
simulation, the log object would contain data for only one of the regions, because the
other was eliminated as a duplicate.

In R2008a, Simulink no longer eliminates duplicate regions when logging the output of
virtual blocks like Mux or Selector blocks. Simulink now logs all regions, which appear in
a Simulink.TsArray object. The duplicate regions have unique names as follows:

<signal_name>_reg<#counter>

This change affects signal logs and all capabilities that depend on signal logging, such as
scopes and signal viewers.

Compatibility Considerations

In cases where signal logging previously omitted duplicate regions, signal logs will now
be larger, and scopes and signal viewers will now show more data. This change could give
the impression that the results of simulation have changed, but actually only the logging
of those results has changed. No action is needed unless:

• A dependency exists on the exact size of a log or the details of its contents.
• The size and details have changed due to the inclusion of previously omitted signals.

In such a case, make changes as needed to accept the changed logging behavior. See
Exporting Signal Data Using Signal Logging for more information.

Simulink Configuration Parameters

In R2008b, the following Simulink configuration parameters are updated:

Note: The command-line parameter name is not changing for these parameters.

Location Previous Parameter New Parameter

Solver States shape preservation /
ShapePreserveControl

Shape preservation /
ShapePreserveControl

22-18

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsxca4i-1.html

 User Interface Enhancements

Location Previous Parameter New Parameter

Solver Consecutive min
step size violations /
MaxConsecutiveMinStep

Number of consecutive
min steps /
MaxConsecutiveMinStep

Solver Consecutive zero crossings
relative tolerance /
ConsecutiveZCsStepRelTol

Time tolerance /
ConsecutiveZCsStepRelTol

Solver Zero crossing
location algorithm /
ZeroCrosAlgorithm

Algorithm /
ZeroCrosAlgorithm

Solver Zero crossing location
threshold / ZCThreshold

Signal threshold/
ZCThreshold

Solver Number of consecutive
zero crossings allowed /
MaxConsecutiveZCs

Number of consecutive
zero crossings /
MaxConsecutiveZCs

Optimization Eliminate superfluous
temporary variables
(Expression folding) /
ExpressionFolding

Eliminate superfluous
local variables (Expression
folding) / ExpressionFolding

Optimization Remove internal state
zero initialization /
ZeroInternalMemoryAtStartup

Remove internal data
zero initialization /
ZeroInternalMemoryAtStartup

In R2008b, the following Simulink configuration parameters have moved:

Note: The command-line parameter name is not changing for these parameters.

Parameter Old Location New Location

Check undefined subsystem
initial output

Diagnostics > Compatibility Diagnostics > Data Validity

Check preactivation output
of execution context

Diagnostics > Compatibility Diagnostics > Data Validity

Check runtime output of
execution context

Diagnostics > Compatibility Diagnostics > Data Validity

22-19

R2008b

In R2008b, the Optimization > Minimize array reads using temporary variables
parameter has been obsoleted.

Model Help Menu Update

The Simulink model Help menu now includes links to block support tables for the
following products, if they are installed.

• Simulink
• Communications Blockset™
• Signal Processing Blockset
• Video and Image Processing Blockset™

To obtain the block support tables for all of these products that are installed, select Help
> Block Support Table > All Tables.

In previous releases, Help > Block Support Table provided such tables only for the
main Simulink library.

Unified Simulation and Embeddable Code Generation Options

You can now specify both simulation and embeddable code generation options in the
Configuration Parameters dialog box. The simulation options apply only to Embedded
MATLAB Function blocks, Stateflow charts, and Truth Table blocks.

The following table summarizes changes that apply for Embedded MATLAB Function
blocks:

Type of
Model

Simulation Options Embeddable Code Generation Options

Nonlibrary Migrated from the Simulation Target
dialog box to the Configuration
Parameters dialog box.

See:

• “Nonlibrary Models: Changes for the
General Pane of the Simulation Target
Dialog Box” on page 22-21

New menu item in the Embedded
MATLAB Editor for specifying code
generation options for nonlibrary models:
Tools > Open RTW Target

New options in the Real-Time
Workshop pane of the Configuration
Parameters dialog box.

See:

22-20

 User Interface Enhancements

Type of
Model

Simulation Options Embeddable Code Generation Options

• “Nonlibrary Models: Changes for the
Custom Code Pane of the Simulation
Target Dialog Box” on page 22-23

• “Nonlibrary Models: Changes for the
Description Pane of the Simulation
Target Dialog Box” on page 22-24

• “Nonlibrary Models: Enhancement
for the Real-Time Workshop: Symbols
Pane of the Configuration Parameters
Dialog Box” on page 22-32

• “Nonlibrary Models: Enhancement
for the Real-Time Workshop: Custom
Code Pane of the Configuration
Parameters Dialog Box” on page
22-33

Library Migrated from the Simulation Target
dialog box to the Configuration
Parameters dialog box.

See:

• “Library Models: Changes for the
General Pane of the Simulation Target
Dialog Box” on page 22-27

• “Library Models: Changes for the
Custom Code Pane of the Simulation
Target Dialog Box” on page 22-28

• “Library Models: Changes for the
Description Pane of the Simulation
Target Dialog Box” on page 22-30

New menu item in Embedded MATLAB
Editor for specifying custom code
generation options for library models:
Tools > Open RTW Target

For a description of these options, see
“Library Models: Support for Specifying
Custom Code Options in the Real-Time
Workshop Pane of the Configuration
Parameters Dialog Box” on page
22-33.

For details about the new options, see Configuration Parameters Dialog Box in the
Simulink Graphical User Interface documentation. For compatibility information, see
???.

For changes specific to Stateflow, see Unified Simulation and Embeddable Code
Generation Options for Stateflow Charts and Truth Table Blocks in the Stateflow and
Stateflow Coder release notes.

Nonlibrary Models: Changes for the General Pane of the Simulation Target Dialog Box

The following sections describe changes in the panes of the Simulation Target dialog box
for nonlibrary models.

22-21

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq74bj9.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/rn/brngi6b-1.html#brngn39
http://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/rn/brngi6b-1.html#brngn39

R2008b

Release Appearance

Previous General pane of the Simulation Target dialog box

New Simulation Target pane of the Configuration Parameters dialog box

For details, see “Nonlibrary Models: Mapping of GUI Options from the Simulation Target
Dialog Box to the Configuration Parameters Dialog Box” on page 22-25.

22-22

 User Interface Enhancements

Nonlibrary Models: Changes for the Custom Code Pane of the Simulation Target Dialog Box

Release Appearance

Previous Custom Code pane of the Simulation Target dialog box

New Simulation Target > Symbols pane of the Configuration Parameters dialog box

New Simulation Target > Custom Code pane of the Configuration Parameters dialog box

22-23

R2008b

Release Appearance

For details, see “Nonlibrary Models: Mapping of GUI Options from the Simulation Target
Dialog Box to the Configuration Parameters Dialog Box” on page 22-25.

Nonlibrary Models: Changes for the Description Pane of the Simulation Target Dialog Box

In previous releases, the Description pane of the Simulation Target dialog box appeared
as follows.

22-24

 User Interface Enhancements

In R2008b, these options are no longer available. For older models where the
Description pane contained information, the text is now accessible only in the Model
Explorer. When you select Simulink Root > Configuration Preferences in the Model
Hierarchy pane, the text appears in the Description field for that model.

Nonlibrary Models: Mapping of GUI Options from the Simulation Target Dialog Box to the
Configuration Parameters Dialog Box

For nonlibrary models, the following table maps each GUI option in the Simulation
Target dialog box to the equivalent in the Configuration Parameters dialog box. The
options are listed in order of appearance in the Simulation Target dialog box.

Old Option in the Simulation
Target Dialog Box

New Option in the Configuration
Parameters Dialog Box

Default Value of New Option

General > Enable
debugging / animation

Simulation Target > Enable
debugging / animation

on

General > Enable overflow
detection (with debugging)

Simulation Target > Enable
overflow detection (with
debugging)

on

22-25

R2008b

Old Option in the Simulation
Target Dialog Box

New Option in the Configuration
Parameters Dialog Box

Default Value of New Option

General > Echo expressions
without semicolons

Simulation Target > Echo
expressions without
semicolons

on

General > Build Actions Simulation Target >
Simulation target build
mode

Incremental build

None Simulation Target > Custom
Code > Source file

''

Custom Code > Include
Code

Simulation Target > Custom
Code > Header file

''

Custom Code > Include
Paths

Simulation Target > Custom
Code > Include directories

''

Custom Code > Source Files Simulation Target > Custom
Code > Source files

''

Custom Code > Libraries Simulation Target > Custom
Code > Libraries

''

Custom Code >
Initialization Code

Simulation Target > Custom
Code > Initialize function

''

Custom Code > Termination
Code

Simulation Target > Custom
Code > Terminate function

''

Custom Code > Reserved
Names

Simulation Target >
Symbols > Reserved names

{}

Custom Code > Use these
custom code settings for all
libraries

None Not applicable

22-26

 User Interface Enhancements

Old Option in the Simulation
Target Dialog Box

New Option in the Configuration
Parameters Dialog Box

Default Value of New Option

Description > Description None

Note: If you load an older
model that contained
user-specified text in the
Description field, that
text now appears in the
Model Explorer. When you
select Simulink Root >
Configuration Preferences
in the Model Hierarchy
pane, the text appears in the
Description field for that
model.

Not applicable

Description > Document
Link

None Not applicable

Note: For nonlibrary models, Simulation Target options in the Configuration
Parameters dialog box are also available in the Model Explorer. When you select
Simulink Root > Configuration Preferences in the Model Hierarchy pane, you can
select Simulation Target in the Contents pane to access the options.

Library Models: Changes for the General Pane of the Simulation Target Dialog Box

In previous releases, the General pane of the Simulation Target dialog box for library
models appeared as follows.

22-27

R2008b

In R2008b, these options are no longer available. All library models inherit these option
settings from the main model to which the libraries are linked.

Library Models: Changes for the Custom Code Pane of the Simulation Target Dialog Box

Release Appearance

Previous Custom Code pane of the Simulation Target dialog box

22-28

 User Interface Enhancements

Release Appearance

New Simulation Target pane of the Configuration Parameters dialog box

For details, see “Library Models: Mapping of GUI Options from the Simulation Target
Dialog Box to the Configuration Parameters Dialog Box” on page 22-30.

22-29

R2008b

Library Models: Changes for the Description Pane of the Simulation Target Dialog Box

In previous releases, the Description pane of the Simulation Target dialog box appeared
as follows.

In R2008b, these options are no longer available. For older models where the
Description pane contained information, the text is discarded.

Library Models: Mapping of GUI Options from the Simulation Target Dialog Box to the
Configuration Parameters Dialog Box

For library models, the following table maps each GUI option in the Simulation Target
dialog box to the equivalent in the Configuration Parameters dialog box. The options are
listed in order of appearance in the Simulation Target dialog box.

22-30

 User Interface Enhancements

Old Option in the Simulation
Target Dialog Box

New Option in the Configuration
Parameters Dialog Box

Default Value of New Option

General > Enable
debugging / animation

None Not applicable

General > Enable overflow
detection (with debugging)

None Not applicable

General > Echo expressions
without semicolons

None Not applicable

General > Build Actions None Not applicable
None Simulation Target > Source

file
''

Custom Code > Include
Code

Simulation Target > Header
file

''

Custom Code > Include
Paths

Simulation Target > Include
directories

''

Custom Code > Source Files Simulation Target > Source
files

''

Custom Code > Libraries Simulation Target >
Libraries

''

Custom Code >
Initialization Code

Simulation Target >
Initialize function

''

Custom Code > Termination
Code

Simulation Target >
Terminate function

''

Custom Code > Reserved
Names

None Not applicable

Custom Code > Use local
custom code settings (do not
inherit from main model)

Simulation Target > Use
local custom code settings
(do not inherit from main
model)

off

Description > Description None Not applicable
Description > Document
Link

None Not applicable

22-31

R2008b

Note: For library models, Simulation Target options in the Configuration Parameters
dialog box are not available in the Model Explorer.

Nonlibrary Models: Enhancement for the Real-Time Workshop: Symbols Pane of the
Configuration Parameters Dialog Box

In previous releases, the Real-Time Workshop > Symbols pane of the Configuration
Parameters dialog box appeared as follows.

In R2008b, a new option is available in this pane: Reserved names. You can use this
option to specify a set of keywords that the Real-Time Workshop build process should not
use. This action prevents naming conflicts between functions and variables from external
environments and identifiers in the generated code.

You can also choose to use the reserved names specified in the Simulation Target >
Symbols pane to avoid entering the same information twice for the nonlibrary model.
Select the option Use the same reserved names as Simulation Target.

22-32

 User Interface Enhancements

Nonlibrary Models: Enhancement for the Real-Time Workshop: Custom Code Pane of the
Configuration Parameters Dialog Box

In previous releases, the Real-Time Workshop > Custom Code pane of the
Configuration Parameters dialog box appeared as follows.

In R2008b, a new option is available in this pane: Use the same custom code settings
as Simulation Target. You can use this option to copy the custom code settings from
the Simulation Target > Custom Code pane to avoid entering the same information
twice for the nonlibrary model.

Library Models: Support for Specifying Custom Code Options in the Real-Time Workshop Pane
of the Configuration Parameters Dialog Box

In R2008b, you can specify custom code options in the Configuration Parameters dialog
box, as shown:

22-33

R2008b

For more information, see Code Generation Pane: Custom Code in the Real-Time
Workshop documentation.

Mapping of Target Object Properties to Parameters in the Configuration
Parameters Dialog Box

Previously, you could programmatically set options for simulation and embeddable code
generation of models containing Embedded MATLAB Function blocks, Stateflow charts,
or Truth Table blocks by accessing the API properties of Target objects sfun and rtw,
respectively. In R2008b, the API properties of Target objects sfun and rtw are replaced
by parameters that you configure using the commands get_param and set_param.

For compatibility details, see ???.

22-34

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/bq259jb-1.html

 User Interface Enhancements

Mapping of Object Properties to Simulation Parameters for Nonlibrary Models

The following table maps API properties of the Target object sfun for nonlibrary models
to the equivalent parameters in R2008b. Object properties are listed in alphabetical
order; those not listed in the table do not have equivalent parameters in R2008b.

Old sfun Object Property Old Option in the
Simulation Target
Dialog Box

New Configuration
Parameter

New Option in
the Configuration
Parameters Dialog
Box

CodeFlagsInfo

('debug')

General
> Enable
debugging /
animation

SFSimEnableDebug

string - off, on

Simulation
Target > Enable
debugging /
animation

CodeFlagsInfo

('overflow')

General
> Enable
overflow
detection
(with
debugging)

SFSimOverflowDetection

string - off, on

Simulation
Target > Enable
overflow
detection (with
debugging)

CodeFlagsInfo

('echo')

General
> Echo
expressions
without
semicolons

SFSimEcho

string - off, on

Simulation
Target > Echo
expressions
without
semicolons

CustomCode Custom Code >
Include Code

SimCustomHeaderCode

string - ''

Simulation
Target > Custom
Code > Header
file

CustomInitializer Custom Code
> Initialization
Code

SimCustomInitializer

string - ''

Simulation
Target > Custom
Code > Initialize
function

CustomTerminator Custom Code
> Termination
Code

SimCustomTerminator

string - ''

Simulation
Target > Custom
Code > Terminate
function

22-35

R2008b

Old sfun Object Property Old Option in the
Simulation Target
Dialog Box

New Configuration
Parameter

New Option in
the Configuration
Parameters Dialog
Box

ReservedNames Custom Code
> Reserved
Names

SimReservedNameArray

string array - {}

Simulation
Target > Symbols
> Reserved
names

UserIncludeDirs Custom Code >
Include Paths

SimUserIncludeDirs

string - ''

Simulation
Target > Custom
Code > Include
directories

UserLibraries Custom Code >
Libraries

SimUserLibraries

string - ''

Simulation
Target > Custom
Code > Libraries

UserSources Custom Code >
Source Files

SimUserSources

string - ''

Simulation
Target > Custom
Code > Source
files

Mapping of Object Properties to Simulation Parameters for Library Models

The following table maps API properties of the Target object sfun for library models to
the equivalent parameters in R2008b. Object properties are listed in alphabetical order;
those not listed in the table do not have equivalent parameters in R2008b.

Old sfun Object Property Old Option in the
Simulation Target
Dialog Box

New Configuration
Parameter

New Option in
the Configuration
Parameters Dialog
Box

CustomCode Custom Code >
Include Code

SimCustomHeaderCode

string - ''

Simulation
Target > Header
file

CustomInitializer Custom Code
> Initialization
Code

SimCustomInitializer

string - ''

Simulation
Target >
Initialize
function

22-36

 User Interface Enhancements

Old sfun Object Property Old Option in the
Simulation Target
Dialog Box

New Configuration
Parameter

New Option in
the Configuration
Parameters Dialog
Box

CustomTerminator Custom Code
> Termination
Code

SimCustomTerminator

string - ''

Simulation
Target >
Terminate
function

UseLocalCustomCodeSettingsCustom Code
> Use local
custom code
settings (do
not inherit
from main
model)

SimUseLocalCustomCode

string - off, on

Simulation
Target > Use
local custom
code settings (do
not inherit from
main model)

UserIncludeDirs Custom Code >
Include Paths

SimUserIncludeDirs

string - ''

Simulation
Target > Include
directories

UserLibraries Custom Code >
Libraries

SimUserLibraries

string - ''

Simulation
Target >
Libraries

UserSources Custom Code >
Source Files

SimUserSources

string - ''

Simulation
Target > Source
files

Mapping of Object Properties to Code Generation Parameters for Library Models

The following table maps API properties of the Target object rtw for library models to
the equivalent parameters in R2008b. Object properties are listed in alphabetical order;
those not listed in the table do not have equivalent parameters in R2008b.

Old rtw Object Property Old Option in
the RTW Target
Dialog Box

New Configuration
Parameter

New Option in
the Configuration
Parameters Dialog
Box

CustomCode Custom Code >
Include Code

CustomHeaderCode

string - ''

Real-Time
Workshop >
Header file

22-37

R2008b

Old rtw Object Property Old Option in
the RTW Target
Dialog Box

New Configuration
Parameter

New Option in
the Configuration
Parameters Dialog
Box

CustomInitializer Custom Code
> Initialization
Code

CustomInitializer

string - ''

Real-Time
Workshop
> Initialize
function

CustomTerminator Custom Code
> Termination
Code

CustomTerminator

string - ''

Real-Time
Workshop >
Terminate
function

UseLocalCustomCodeSettingsCustom Code
> Use local
custom code
settings (do
not inherit
from main
model)

RTWUseLocalCustomCode

string - off, on

Real-Time
Workshop > Use
local custom
code settings (do
not inherit from
main model)

UserIncludeDirs Custom Code >
Include Paths

CustomInclude

string - ''

Real-Time
Workshop
> Include
directories

UserLibraries Custom Code >
Libraries

CustomLibrary

string - ''

Real-Time
Workshop >
Libraries

UserSources Custom Code >
Source Files

CustomSource

string - ''

Real-Time
Workshop >
Source files

Compatibility Considerations

When you load and save older models in R2008b, not all target property settings are
preserved.

22-38

 User Interface Enhancements

What Happens When You Load an Older Model in R2008b

When you use R2008b to load a model created in an earlier version, dialog box options
and the equivalent object properties for simulation and embeddable code generation
targets migrate automatically to the Configuration Parameters dialog box, except in the
cases that follow.

For the simulation target (sfun) of a nonlibrary model, these options and properties do
not migrate to the Configuration Parameters dialog box.

Option in the Simulation Target Dialog Box of a
Nonlibrary Model

Equivalent Object Property

Custom Code > Use these custom code
settings for all libraries

ApplyToAllLibs

Description > Description Description

Note: If you load an older model that contained
user-specified text in the Description field, that
text now appears in the Model Explorer. When
you select Simulink Root > Configuration
Preferences in the Model Hierarchy pane,
the text appears in the Description field for
that model.

Description > Document Link Document

For the simulation target (sfun) of a library model, these options and properties do not
migrate to the Configuration Parameters dialog box.

Option in the Simulation Target Dialog Box of a
Library Model

Equivalent Object Property

General > Enable debugging / animation CodeFlagsInfo('debug')

General > Enable overflow detection (with
debugging)

CodeFlagsInfo('overflow')

General > Echo expressions without
semicolons

CodeFlagsInfo('echo')

22-39

R2008b

Option in the Simulation Target Dialog Box of a
Library Model

Equivalent Object Property

General > Build Actions None
Custom Code > Reserved Names ReservedNames

Description > Description Description

Description > Document Link Document

For the embeddable code generation target (rtw) of a library model, these options and
properties do not migrate to the Configuration Parameters dialog box.

Option in the RTW Target Dialog Box of a Library
Model

Equivalent Object Property

General > Comments in generated code CodeFlagsInfo('comments')

General > Use bitsets for storing state
configuration

CodeFlagsInfo('statebitsets')

General > Use bitsets for storing boolean
data

CodeFlagsInfo('databitsets')

General > Compact nested if-else using
logical AND/OR operators

CodeFlagsInfo('emitlogicalops')

General > Recognize if-elseif-else in nested
if-else statements

CodeFlagsInfo('elseifdetection')

General > Replace constant expressions by
a single constant

CodeFlagsInfo('constantfolding')

General > Minimize array reads using
temporary variables

CodeFlagsInfo('redundantloadelimination')

General > Preserve symbol names CodeFlagsInfo('preservenames')

General > Append symbol names with
parent names

CodeFlagsInfo('preservenameswithparent')

General > Use chart names with no
mangling

CodeFlagsInfo('exportcharts')

General > Build Actions None
Custom Code > Reserved Names ReservedNames

Description > Description Description

22-40

 User Interface Enhancements

Option in the RTW Target Dialog Box of a Library
Model

Equivalent Object Property

Description > Document Link Document

What Happens When You Save an Older Model in R2008b

When you use R2008b to save a model created in an earlier version, parameters for
simulation and embeddable code generation from the Configuration Parameters dialog
box are saved. However, properties of API Target objects sfun and rtw are not saved if
those properties do not have an equivalent parameter in the Configuration Parameters
dialog box. In R2008b, this behavior applies even if you choose to save the model as an
older version (for example, R2007a).

New Parameters in the Configuration Parameters Dialog Box for
Simulation and Embeddable Code Generation

In R2008b, new parameters are added to the Configuration Parameters dialog box for
simulation and embeddable code generation of models that contain Embedded MATLAB
Function blocks, Stateflow charts, or Truth Table blocks.

New Simulation Parameters for Nonlibrary Models

The following table lists the new simulation parameters that apply to nonlibrary models.

New Configuration Parameter New Option in the Configuration
Parameters Dialog Box

Description

SimBuildMode

string –
sf_incremental_build,
sf_nonincremental_build,
sf_make, sf_make_clean,
sf_make_clean_objects

Simulation Target >
Simulation target build
mode

Specifies how you build the
simulation target for a model.

SimCustomSourceCode

string - ''

Simulation Target > Custom
Code > Source file

Enter code lines to appear near
the top of a generated source
code file.

New Simulation Parameter for Library Models

The following table lists the new simulation parameter that applies to library models.

22-41

R2008b

New Configuration Parameter New Option in the Configuration
Parameters Dialog Box

Description

SimCustomSourceCode

string - ''

Simulation Target > Source
file

Enter code lines to appear near
the top of a generated source
code file.

New Code Generation Parameters for Nonlibrary Models

The following table lists the new code generation parameters that apply to nonlibrary
models.

New Configuration Parameter New Option in the Configuration
Parameters Dialog Box

Description

ReservedNameArray

string array - {}

Real-Time Workshop >
Symbols > Reserved names

Enter the names of variables
or functions in the generated
code that match the names of
variables or functions specified
in custom code.

RTWUseSimCustomCode

string – off, on

Real-Time Workshop >
Custom Code > Use the
same custom code settings
as Simulation Target

Specify whether to use the same
custom code settings as those
specified for simulation.

UseSimReservedNames

string – off, on

Real-Time Workshop
> Symbols > Use the
same reserved names as
Simulation Target

Specify whether to use the
same reserved names as those
specified for simulation.

New Code Generation Parameters for Library Models

The following table lists the new code generation parameters that apply to library
models.

New Configuration Parameter New Option in the Configuration
Parameters Dialog Box

Description

CustomSourceCode

string – ''

Real-Time Workshop >
Source file

Enter code lines to appear near
the top of a generated source
code file.

22-42

 User Interface Enhancements

New Configuration Parameter New Option in the Configuration
Parameters Dialog Box

Description

RTWUseSimCustomCode

string – off, on

Real-Time Workshop >
Use the same custom code
settings as Simulation
Target

Specify whether to use the same
custom code settings as those
specified for simulation.

22-43

R2008b

S-Functions

Ada S-Functions

In future releases, Simulink will not have a built-in Ada S-function capability. As a
mitigation strategy, call Ada code from Simulink using standard Ada 95 language
features and the Simulink C-MEX S-function API. For details of this process, please
contact Technical Support at MathWorks.

Legacy Code Tool Enhancement

The Legacy Code Tool data structure has been enhanced with a new S-function options
field, singleCPPMexFile, which when set to true

• Requires you to generate and manage an inlined S-function as only one file (.cpp)
instead of two (.c and .tlc)

• Maintains model code style—level of parentheses usage and preservation of operand
order in expressions and condition expressions in if statements—as specified by
model configuration parameters.

When you choose not to use this option, code generated by the Legacy Code Tool does not
reflect code style configuration settings and requires you to manage C-MEX and TLC
files.

For more information, see:

• Integrating Existing C Functions into Simulink Models with the Legacy Code Tool in
the Writing S-Functions documentation

• Integrate External Code Using Legacy Code Tool in the Real-Time Workshop
documentation

• legacy_code function reference page

Compatibility Considerations

• If you upgrade from an earlier release, you can continue to use S-functions generated
from the Legacy Code Tool available in earlier releases. You can continue to compile
the S-function source code and you can continue to use the compiled output from an
earlier release without recompiling the code.

22-44

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/bq4g1es-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bq4fyia.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/legacy_code.html

 S-Functions

• If you set the new singleCPPMexFile options field to true, when creating an S-
function, you cannot use that S-function, in source or compiled form, with versions of
Simulink earlier than Version 7.2 (R2008b).

22-45

R2008b

MATLAB Changes Affecting Simulink

Changes to MATLAB Startup Options

The matlab command line arguments -memmgr and -check_malloc are deprecated
and will be removed in a future release.

For more information, see Changes to matlab Memory Manager Startup Options in the
MATLAB Release Notes.

MATLAB Graphics Tools Not Supported Under -nojvm Startup Option

If you start MATLAB using the command matlab -nojvm (which disables Java), you
will receive warnings when using many graphical tools, for example, when you create
figures, print Simulink models, or view Simulink scopes.

For more information, see “Changes to -nojvm Startup Option” (MATLAB) in the Desktop
Tools and Development Environment release notes.

22-46

http://www.mathworks.com/help/releases/R2012a/techdoc/rn/bropbi9-1.html#brsd3cx-1
http://www.mathworks.com/help/releases/R2012a/techdoc/rn/rn_intro.html

R2008a
Version: 7.1

New Features

Bug Fixes

Compatibility Considerations

R2008a

Simulation Performance

Rapid Accelerator

Improved Rapid Accelerator sim-command performance when running long simulations
of small models on Microsoft Windows platforms.

Long Rapid Accelerator mode simulations of small models invoked by the sim command
under the Microsoft Windows operating system now run faster.

Additional Zero Crossing Algorithm

A second zero crossing algorithm that is especially useful in systems exhibiting strong
chattering behavior has been added for use with variable step solvers.

The new algorithm is selected by choosing Adaptive from the Zero crossing location
algorithm option in the Solver pane of the Configuration Parameter dialog. The default
algorithm is Non-Adaptive, which is the algorithm used prior to this release.

For more information, see Zero-Crossing Algorithms.

23-2

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f7-8243.html#bridiag-7

 Component-Based Modeling

Component-Based Modeling

Efficient Parent Model Rebuilds

In previous releases, changing a referenced model that executed in Accelerator mode
or was used for code generation triggered rebuilding every model that directly or
indirectly referenced the changed model. The rebuilding occurred even if the change to
the referenced model had no effect on its interface to its parent(s).

In R2008a, changing a referenced model that executes in Accelerator mode or is used
for code generation triggers rebuilding a parent model only when the change directly
affects the referenced model's interface to the parent model. This behavior eliminates
unnecessary code regeneration, which can significantly reduce the time needed to update
a diagram.

The faster diagram update has no effect on simulation behavior or performance, but may
change the messages that appear in the MATLAB Command Window. See Referencing a
Model for information about model referencing.

Scalar Root Inputs Passed Only by Reference

The Configuration Parameters > Model Referencing > Pass scalar root inputs by
value option is Off by default, indicating that scalar root inputs are passed by reference.
In previous releases, setting the option to On affected both simulation and generated
code, and caused scalar root inputs to be passed by value. In R2008a, the option has no
effect on simulation: scalar root inputs are now always passed by reference, regardless
of the setting of Pass scalar root inputs by value. The effect of the option on code
generation is the same as in previous releases. See Pass fixed-size scalar root inputs by
value for code generation for more information.

Unlimited Referenced Models

In previous releases, Microsoft Windows imposed a limit on the number of models that
could be referenced in Accelerator mode in a model hierarchy. This limitation is removed
in R2008a. Under Microsoft Windows, as on all other platforms, the number of referenced
models that can appear in a model hierarchy is effectively unlimited. See Referencing a
Model for information about model referencing.

23-3

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141721.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141721.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq7cyf9-1.html#bq8t8ov-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq7cyf9-1.html#bq8t8ov-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141721.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141721.html

R2008a

Embedded MATLAB Function Blocks

Nontunable Structure Parameters

Embedded MATLAB Function blocks now support nontunable MATLAB structure
parameters. For more information, see Working with Structure Parameters in MATLAB
Function Blocks.

Bidirectional Traceability

You can navigate between a line of generated code and its corresponding line of
source code in Embedded MATLAB Function blocks. For more information, see Using
Traceability in MATLAB Function Blocks.

Specify Scaling Explicitly for Fixed-Point Data

When you define data of fixed-point type in Embedded MATLAB Function blocks, you
must specify the scaling explicitly in the General pane of the Data properties dialog box.
For example, you cannot enter an incomplete specification such as fixdt(1,16) in the
Type field. If you do not specify scaling explicitly, you will see an error message when you
try to simulate your model.

To ensure that the data type definition is valid for fixed-point data, perform one of these
steps in the General pane of the Data properties dialog box:

• Use a predefined option in the Type drop-down menu.
• Use the Data Type Assistant to specify the Mode as fixed-point.

Compatibility Considerations

Previously, you could omit scaling in data type definitions for fixed-point data. Such data
types were treated as integers with the specified sign and word length. This behavior
has changed. Embedded MATLAB Function blocks created in earlier versions may now
generate errors if they contain fixed-point data with no scaling specified.

23-4

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bq156zx.html#brlqbhj
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bq156zx.html#brlqbhj
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brlut97.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brlut97.html

 Data Management

Data Management

Array Format Cannot Be Used to Export Multiple Matrix Signals

When you export signals to a workspace in Array format from more than one outport,
none of the signals can be a matrix signal. In previous releases, violating this rule did
not always cause an error, but the matrix data was not exported correctly. In R2008a,
violating the rule always causes an error, and no data export occurs.

When exporting data to a workspace in Array format from multiple outports, use a
Reshape block to convert any matrix signal to a one-dimensional (1-D) array. This
restriction applies only to Array format. If you specify either Structure or Structure
with time format, you can export matrix signals to a workspace from multiple outports
without first converting the signals to vectors.

Compatibility Considerations

The more stringent error checking in R2008a can cause models that export data in
Array format from multiple outports to generate errors rather than silently exporting
matrix data incorrectly. To eliminate such errors, use a Reshape block to convert any
matrix signal to a vector, or switch to Structure or Structure with time format.
See Exporting Simulation Data for information about data export.

Bus Editor Upgraded

The Simulink Bus Editor has been reimplemented to provide a GUI interface similar to
that of the Model Explorer, and to provide several new capabilities, including importing/
exporting data from MAT-files and M-files, defining bus objects and elements with the
Data Type Assistant, and creating and viewing bus hierarchies (nested bus objects). See
Using the Bus Editor for details.

Changing Nontunable Values Does Not Affect the Current Simulation

In previous releases, changing the value of any variable or parameter during simulation
took effect immediately. In R2008a, only changes to tunable variables and parameters
take effect immediately. Other changes have no effect until the next simulation begins.
This modification causes simulation behavior to match generated code behavior when
the values of nontunable variables and parameters change, and it improves efficiency

23-5

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsw6ld5.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brin2jr-1.html

R2008a

by eliminating unnecessary re-evaluation. For information about parameter tuning, see
Tunable Parameters and Using Tunable Parameters.

Compatibility Considerations

In R2008a, simulation behavior will differ if the behavior in a previous release depended
on changing any nontunable variable or parameter during simulation. To regain the
previous behavior, define as tunable any nontunable variable or parameter that you want
to change during simulation for the purpose of affecting simulation immediately.

Detection of Illegal Rate Transitions

Illegal rate transitions between a block and a triggered subsystems or function call
subsystems are now detected when the block is connected to a Unit Delay or Zero Hold
block inside a triggered subsystem.

Compatibility Considerations

In this release, Simulink detects illegal rate transition errors when the block sample time
is different from the triggered subsystem sample time in those models where the block is
connected to a Unit Delay or Zero Hold block inside the triggered subsystem.

Explicit Scaling Required for Fixed-Point Data

In R2008a, when you define a fixed-point data type in a Simulink model, you must
explicitly specify the scaling unless the block supports either integer scaling mode or
best-precision scaling mode. If a block supports neither of these modes, you cannot define
an incomplete fixed-point data type like fixdt(1,16), which specifies no scaling. See
Specifying a Fixed-Point Data Type and Showing Fixed-Point Details for information
about defining fixed-point data types.

Compatibility Considerations

In previous releases, you could define a fixed-point data type that specified no scaling in
a block that supported neither integer scaling mode nor best-precision scaling mode. The
Simulink software posted no warning, and treated fixed-point data type as an integer
data type with the specified word length. For example, fixdt(1,16) was treated as
fixdt(1,16,0).

23-6

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f7-20739.html#f7-23615
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f13-87137.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f14-90479.html#bsnnyna-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f14-90479.html#bsnnyna-7

 Data Management

In R2008a, a fixed-point data type definition that specifies no scaling generates an error
unless the block supports either integer scaling mode or best-precision scaling mode.
If such an error occurs when you compile a model from an earlier Simulink version,
redefine the incomplete fixed-point data type to be an integer type if nothing more is
needed, or to be scaled appropriately for its value range.

Fixed-Point Details Display Available

The Data Type Assistant can now display the status and details of fixed-point data
types. See Specifying a Fixed-Point Data Type and Showing Fixed-Point Details for more
information.

More than 2GB of Simulation Data Can be Logged on 64-Bit Platforms

When you log time, states, final states, and signals on a 64-bit platform, you can now
save more simulation data in the MATLAB base workspace than was previously possible.

• When you log data using the Structure, Structure with time, or Timeseries
format, you can now save up to 2^48-1 bytes in each field that contains logged data.

• When you log data using Array format, you can now save up to 2^48-1 bytes in each
array that contains logged data.

Previously the limit was 2^31-1 bytes in each field or array containing logged data.
See Exporting Signal Data Using Signal Logging and Data Import/Export Pane for
information about logging data.

23-7

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f14-90479.html#bsnnyna-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f14-90479.html#bsnnyna-7
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsxca4i-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq7cpr_.html

R2008a

Order of Simulink and MPT Parameter and Signal Fields Changed

The order of the fields in the Simulink.Parameter and Simulink.Signal classes,
and in their respective subclasses mpt.Parameter and mpt.Signal, has changed in
R2008a.

The order for Simulink.Parameter (and mpt.Parameter) is now:

Simulink.Parameter (handle)

 Value: []

 RTWInfo: [1x1 Simulink.ParamRTWInfo]

 Description: ''

 DataType: 'auto'

 Min: -Inf

 Max: Inf

 DocUnits: ''

 Complexity: 'real'

 Dimensions: [0 0]

The order for Simulink.Signal (and mpt.Signal) is now:

Simulink.Signal (handle)

 RTWInfo: [1x1 Simulink.SignalRTWInfo]

 Description: ''

 DataType: 'auto'

 Min: -Inf

 Max: Inf

 DocUnits: ''

 Dimensions: -1

 Complexity: 'auto'

 SampleTime: -1

 SamplingMode: 'auto'

 InitialValue: ''

Loading a model that uses any Simulink.Parameter or mpt.Parameter objects, and
was saved in a release prior to R2008a, may post an Inconsistent Data warning in the
MATLAB Command Window. This message does not indicate a problem with the model,
which need not be changed. Resave the model in R2008a to update it to use the new
parameter class definitions. The warning will not appear when you reopen the model.

23-8

 Data Management

Range Checking for Complex Numbers

Previous releases did not provide range checking for complex numbers, and attempting
it generated an error. In R2008a, you can specify a minimum and/or maximum value for
a complex number wherever range checking is available and a complex number is a legal
value.

The specified minimum and maximum values apply separately to the real part and to the
imaginary part of the complex number. If the value of either part of the number is less
than the minimum, or greater than the maximum, the complex number is outside the
specified range.

No range checking occurs against any combination of the real and imaginary parts,
such as (sqrt(a^2+b^2)). See Checking Parameter Values and Signal Ranges for
information about range checking.

Rate Transition Blocks Needed on Virtual Buses

In this release, Simulink never automatically inserts a Rate Transition block into a
virtual bus, even if Automatically handle rate transfer is selected. Instead, an
error is displayed indicating that a Rate Transition block must be manually inserted.

Compatibility Considerations

Some models that worked in previous releases, but were dependent on automatic Rate
Transition block insertion, will now report an error and will no longer run. An error will
be reported if all of these apply:

• The Automatically handle rate transfer option is enabled
• The model is multirate
• The model has a virtual bus, all of the elements on the bus have the same data type,

and the sample time changes
• A bus selector block is not present on the virtual bus at a point after the sample time

changes
• The only way to address the rate transition problem is to insert a rate transition block

Sample Times for Virtual Blocks

In models with asynchronous function calls, some virtual blocks now correctly assign
generic sample times instead of triggered sample times.

23-9

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brdguka-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brdikno.html

R2008a

Compatibility Considerations

The CompiledSampleTime parameter now reports the compiled sample time as generic
sample time (that is, [-1, -inf]) rather than triggered sample time ([-1,-1]) for virtual
blocks for which all of the flowing is true:

• The virtual block is downstream from an asynchronous source
• The virtual block is not inside a triggered subsystem
• The virtual block had a triggered ([-1,-1]) sample time in previous releases

The simulation results, code generation, and sample time colors are not affected by this
change.

Signals Needing Resolution Are Graphically Indicated

In R2008a, the Simulink Editor by default graphically indicates signals that must resolve
to signal objects. For any labeled signal whose Signal name must resolve to signal
object property is enabled, a signal resolution icon appears to the left of the signal name.
The icon looks like this:

A signal resolution icon indicates only that a signal's Signal name must resolve to
signal object property is enabled. The icon does not indicate whether the signal is
actually resolved, and does not appear on a signal that is implicitly resolved without
its Signal name must resolve to signal object property being enabled. See Signal
Resolution Indicators for more information.

23-10

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f15-90106.html#brk9t6k-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f15-90106.html#brk9t6k-1

 Simulink File Management

Simulink File Management

Autosave

New Autosave option automatically creates a backup copy of models before updating or
simulating. If you open or load a model which has a more recent autosave copy available,
a dialog appears where you can choose to overwrite the original model file with the
autosave copy.

You can set the Autosave option in the Simulink Preferences Window. See Autosave in
the Simulink Graphical User Interface documentation.

Old Version Notification

New option to notify when loading a model saved in a previous version of Simulink
software.

You can set this option in the Simulink Preferences Window. See Simulink Preferences
Window: Main Pane in the Simulink Graphical User Interface documentation.

Model Dependencies Tools

Enhanced file dependency analysis now also detects:

• TLC files required by S-functions.
• .fig files created by GUIDE.
• Files referenced by common data loading functions. File names passed to xlsread,

importdata, dlmread, csvread, wk1read, and textread are now identified, in
addition to the existing capability for load, fopen and imread.

See Scope of Dependency Analysis in the Using Simulink documentation.

23-11

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/brh72r5-1.html#briz2pd
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/brh72r5-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/brh72r5-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bq2ifjj-1.html#brbi17x

R2008a

Block Enhancements

New Discrete FIR Filter Block Replaces Weighted Moving Average Block

The Discrete FIR Filter block in the Discrete library is new for this release. This block
independently filters each channel of the input signal with the specified digital FIR filter.
The Discrete FIR Filter block replaces the Weighted Moving Average block.

Compatibility Considerations

You should replace Weighted Moving Average blocks in your existing models with the
Discrete FIR Filter block. To do this, run the slupdate command on your models.

Rate Transition Block Enhancements

Support for Rate Transition blocks has been enhanced in the following ways:

• Rate Transition block output port sample time now can be specified as a multiple of
input port sample time, using the new Rate Transition block parameters Output
port sample time options and Sample time multiple (>0). See the Rate
Transition block documentation for more information.

• In previous releases, auto-insertion of Rate Transition blocks was selected for a
model using the option Automatically handle data transfers between tasks on
the Solver pane of the Configuration Parameters dialog box. When selected, auto-
insertion always ensured data transfer determinism for periodic tasks.

This release allows you to control the level of data transfer determinism when auto-
insertion of Rate Transition blocks is selected for your model. The Solver pane
option for selecting auto-insertion has been renamed to Automatically handle rate
transition for data transfer. Selecting auto-insertion now enables a new option,
Deterministic data transfer. Selecting Never (minimum delay) or Whenever
possible for this option can provide reduced latency for models that do not require
determinism. See the Solver Pane section in the Simulink Graphical User Interface
documentation for more information.

• Auto-insertion of Rate Transition blocks is now supported for additional rate
transitions, such as sample times with nonzero offset, and between non-integer-
multiple sample times.

23-12

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretefirfilter.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/ratetransition.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/ratetransition.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq7cmsp-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/ug_intropage.html

 Block Enhancements

Enhanced Lookup Table (n-D) Block

The Lookup Table (n-D) block now supports all data types, complex table data, and
nonscalar inputs. See the Lookup Table (n-D) block documentation for more information.

New Accumulator Parameter on Sum Block

The Sum block dialog box displays a new parameter for specifying the data type of its
accumulator. See the Sum block documentation for more information.

23-13

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/sum.html

R2008a

User Interface Enhancements

Simulink Library Browser

A new version of the Simulink Library browser has the following enhancements:

• Now available on all platforms supported by Simulink software.
• Improved performance for browsing and searching of libraries, by allowing these

operations to proceed without actually loading the libraries.
• Enhanced search finds all blocks and displays search results in a separate tab.
• New option to display library blocks in a compact grid layout that conserves screen

space.

Simulink Preferences Window

New unified Simulink Preferences window for configuring default settings. The new
Preferences window allows you to configure file change notifications, autosave options,
fonts, display options, and model configuration defaults.

See Simulink Preferences Window: Main Pane in the Simulink Graphical User Interface
documentation.

Model Advisor

In R2008a, the Model Advisor tool is enhanced with improved GUI navigation, check
analysis, and reports including:

• Reset option that reverts the status of all checks to Not Run while keeping the
current check selection.

• Model Advisor Result Explorer to make changes to your model.
• Input Parameters to provide inputs to checks.
• Check results reported in the same order as the Model Advisor tree.
• The ability to generate reports for any folder.
• Timestamps in reports indicating when checks run at different times.

See Consulting the Model Advisor in the Simulink User's Guide.

23-14

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/brh72r5-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141979.html

 User Interface Enhancements

Solver Controls

Enhanced controls in the Solver pane of the Configuration Parameters dialog. The Solver
pane of the Configuration Parameters dialog has been changed as follows:

• The Solver diagnostic controls pane has been removed and two new panes have
been added (Tasking and sample time options, and Zero crossing options)

• The Automatically handle data transfers between tasks control has
been moved to the Tasking and sample time options pane, and has been renamed
Automatically handle rate transition for data transfer

• The Higher priority value indicates higher task priority control has
been moved to the Tasking and sample time options pane

• The Number of consecutive min step size violations allowed control
has been moved to the Solver options pane, and has been renamed Consecutive
min step size violations allowed

• The States shape preservation control has been added to the Solver options
pane

• The Consecutive zero crossings relative tolerance control has been
moved to the Zero crossing options pane

• The Number of consecutive zero crossings allowed control has been moved
to the Zero crossing options pane

• The Zero crossing control control has been moved to the Zero crossing
options pane

• The Zero crossing location algorithm control has been added to the Zero
crossing options pane

• The Zero crossing location threshold control has been added to the Zero
crossing options pane

• Options that in previous releases were only visible when enabled are now always
visible. They are grayed when not enabled.

For more information on the Configuration parameters solver pane, see Solver Pane.

Compatibility Considerations

The Solver pane of the Configuration Parameter dialog has been restructured, and many
parameters have moved or been renamed. Please refer to the list of changes above for
information on specific parameters.

23-15

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq7cmsp-1.html

R2008a

“What’s This?” Context-Sensitive Help Available for Simulink
Configuration Parameters Dialog

R2008a introduces “What's This?” context-sensitive help for parameters that appear in
the Simulink Configuration Parameters dialog. This feature provides quick access to
a detailed description of the parameters, saving you the time it would take to find the
information in the Help browser.

To use the "What's This?" help, do the following:

1 Place your cursor over the label of a parameter.
2 Right-click. A What's This? context menu appears.

For example, the following figure shows the What's This? context menu appearing
after a right-click on the Start time parameter in the Solver pane.

3 Click What's This? A context-sensitive help window appears showing a description
of the parameter.

S-Functions

Simplified Level-2 M-File S-Function Template

New basic version of the Level-2 M-file S-function template msfuntmpl_basic.m
simplifies creating Level-2 M-file S-functions. See Writing Level-2 MATLAB S-Functions
in Writing S-Functions for more information.

Compatibility Considerations

MATLAB V7.6 (R2008a) on Linus Torvalds' Linux® platforms is now built with a
compiler that utilizes glibc version 2.3.6. To work with MATLAB V7.6 (R2008a), MEX-file
S-functions compiled on a Linux platform must be rebuilt.

23-16

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/f7-67622.html

R2007b
Version: 7.0

New Features

Bug Fixes

Compatibility Considerations

R2007b

Simulation Performance

Simulink Accelerator

Simulink Accelerator™ has been incorporated into Simulink software, and a new
Rapid Accelerator mode has been added for faster simulation through code generation
technology. See Accelerating Models in Simulink User's Guide.

Note: When using From File blocks in Rapid Accelerator mode, the corresponding MAT
file must be in the current directory.

Compatibility Considerations

A license is no longer required to use the Accelerator or Rapid Accelerator modes.

Simulink Profiler

Simulink Profiler has been incorporated into Simulink software for the identification of
simulation performance bottlenecks. See Capturing Performance Data in Simulink User's
Guide.

Compiler Optimization Level

Simulink Accelerator mode, Rapid Accelerator mode, and model reference simulation
targets can now specify the compiler optimization level used (choose between minimizing
compilation time or simulation time). See Customizing the Build Process in Simulink
User's Guide.

Compatibility Considerations

The new model configuration parameter Compiler optimization level defaults
to Optimizations off (faster builds). As a result, you might notice shorter
build times, but longer execution times, compared to previous releases. However,
any previously defined custom compiler optimization options using OPT_OPTS will be
honored, and model behavior should be unchanged.

24-2

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f0-22210.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/fromfile.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f0-7640.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brah7z_-19.html#brah7z_-20
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html

 Simulation Performance

Variable-Step Discrete Solver

Simulink software has been enhanced to no longer take unnecessary time steps at
multiples of the maximum step size when using a variable-step discrete solver.

Referenced Models Can Execute in Normal or Accelerator Mode

In previous releases, Simulink software executed all referenced models by generating
code for them and executing the generated code. In this release, Simulink software
can execute appropriately configured referenced models interpretively. Such execution
is called Normal mode execution, and execution via generated code is now called
Accelerator mode execution. The technique of executing a referenced model via generated
code has not changed, but it did not previously need a separate name because it was the
only alternative.

Many restrictions that previously applied to all referenced model execution now apply
only to Accelerator mode execution, and are relaxed in Normal mode. For example, some
Simulink tools that did not work with referenced models because they are incompatible
with generated code can now be used by executing the referenced model in Normal mode.

Normal mode also has some restrictions that do not apply to Accelerator mode. For
example, at most, one instance of a given model in a referenced model hierarchy
can execute in Normal mode. See Referencing a Model in Simulink User's Guide for
information about using referenced models in Normal and Accelerator mode.

Accelerator and Model Reference Targets Now Use Standard Internal
Functions

For more consistent simulation results, Simulink Accelerator mode, Rapid Accelerator
mode, and the model reference simulation target now perform mathematical operations
with the same internal functions that MATLAB and Simulink products use.

24-3

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141721.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html

R2007b

Component-Based Modeling

New Instance View Option for the Model Dependency Viewer

The Model Dependency viewer has a new option to display each reference to a model
and indicate whether the reference is simulated in Accelerator or Normal mode. See
Referencing a Model and Model Dependency Viewer in Simulink User's Guide.

Mask Editor Now Requires Java

The Mask Editor now requires that the MATLAB product start with Java enabled. See
Simulink Mask Editor in Simulink User's Guide.

Compatibility Considerations

You can no longer use the Mask Editor if you start MATLAB with the -nojvm option.

24-4

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141721.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bs2_9nl.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/brxj49q-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html

 Embedded MATLAB Function Blocks

Embedded MATLAB Function Blocks

Complex and Fixed-Point Parameters

Embedded MATLAB Function blocks now support complex and fixed-point parameters.

Support for Algorithms That Span Multiple M-Files

You can now generate embeddable code for external M-functions from Embedded
MATLAB function blocks. This feature allows you to call external functions from multiple
locations in an M-file or model and include these functions in the generated code.

Compatibility Considerations

In previous releases, Embedded MATLAB function blocks did not compile external M-
functions, but instead dispatched them to the MATLAB product for execution (after
warning). Now, the default behavior is to compile and generate code for external M-
functions called from Embedded MATLAB function blocks. If you do not want Embedded
MATLAB function blocks to compile external M-functions, you must explicitly declare
them to be extrinsic, as described in Calling MATLAB Functions in the Embedded
MATLAB documentation.

Loading R2007b Embedded MATLAB Function Blocks in Earlier Versions of
Simulink Software

If you save Embedded MATLAB Function blocks in R2007b, you will not be able to load
the corresponding model in earlier versions of Simulink software. To work around this
issue, save your model in the earlier version before loading it, as follows:

1 In the Simulink Editor, select File > Save As.
2 In the Save as type field, select the version in which you want to load the model.

For example, if you want to load the model in Simulink R2007a, select Simulink
6.6/R2007a Models (*.mdl).

24-5

http://www.mathworks.com/help/releases/R2012a/toolbox/eml/ug/bq1h2z9-38.html

R2007b

Data Management

New Diagnostic for Continuous Sample Time on Non-Floating-Point
Signals

A new diagnostic detects continuous sample time on non-floating-point signals.

New Standardized User Interface for Specifying Data Types

This release introduces a new standardized user interface, the Data Type Assistant,
for specifying data types associated with Simulink blocks and data objects, as well as
Stateflow data. See Using the Data Type Assistant in Simulink User's Guide for more
information.

The Data Type Assistant appears on the dialogs of the following Simulink blocks:

• Abs
• Constant
• Data Store Memory
• Data Type Conversion
• Difference
• Discrete Derivative
• Discrete-Time Integrator
• Dot Product
• MATLAB Function (formally called Embedded MATLAB Function)
• Gain
• Inport
• Interpolation Using Prelookup
• Logical Operator
• Lookup Table
• Lookup Table (2-D)
• Lookup Table Dynamic
• Math Function
• MinMax

24-6

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f14-90479.html#brc83mg
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/abs.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/constant.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/datastorememory.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/datatypeconversion.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/difference.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretederivative.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretetimeintegrator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/dotproduct.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/matlabfunction.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/gain.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/inport.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/interpolationusingprelookup.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/logicaloperator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/lookuptabledynamic.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/mathfunction.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/minmax.html

 Data Management

• Multiport Switch
• Outport
• Prelookup
• Product, Divide, Product of Elements
• Relational Operator
• Relay
• Repeating Sequence Interpolated
• Repeating Sequence Stair
• Saturation
• Saturation Dynamic
• Signal Specification
• Sum, Add, Subtract, Sum of Elements
• Switch
• Weighted Moving Average (obsolete — replaced by the Discrete FIR Filter block)

The Data Type Assistant appears on the dialogs of the following Simulink data objects:

• Simulink.BusElement
• Simulink.Parameter
• Simulink.Signal

New Block Parameters for Specifying Minimum and Maximum Values

The following new block parameters are available for specifying the minimum and
maximum values of signals and other block parameters.

• Output minimum, Minimum
• Output maximum, Maximum
• Parameter minimum
• Parameter maximum

These new parameters selectively appear on the dialogs of the following Simulink blocks:

• Abs
• Constant

24-7

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/multiportswitch.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/outport.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/prelookup.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/product.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/divide.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/productofelements.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/relationaloperator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/relay.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/repeatingsequenceinterpolated.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/repeatingsequencestair.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/saturation.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/saturationdynamic.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/signalspecification.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/sum.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/add.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/subtract.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/sumofelements.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/switch.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.parameter.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.signal.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/abs.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/constant.html

R2007b

• Data Store Memory
• Data Type Conversion
• Difference
• Discrete Derivative
• Discrete-Time Integrator
• Gain
• Inport
• Interpolation Using Prelookup
• Lookup Table
• Lookup Table (2-D)
• Math Function
• MinMax
• Multiport Switch
• Outport
• Product, Divide, Product of Elements
• Relay
• Repeating Sequence Interpolated
• Repeating Sequence Stair
• Saturation
• Saturation Dynamic
• Signal Specification
• Sum, Add, Subtract, Sum of Elements
• Switch

New Range Checking of Block Parameters

In this release, Simulink software performs range checking of parameters associated
with blocks that specify minimum and maximum values (see “New Block Parameters
for Specifying Minimum and Maximum Values” on page 24-7). Simulink software
alerts you when values of block parameters lie outside a range that corresponds to its
specified minimum and maximum values and data type. See Checking Parameter Values
in Simulink User's Guide for more information.

24-8

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/datastorememory.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/datatypeconversion.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/difference.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretederivative.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretetimeintegrator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/gain.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/inport.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/interpolationusingprelookup.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/mathfunction.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/minmax.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/multiportswitch.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/outport.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/product.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/divide.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/productofelements.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/relay.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/repeatingsequenceinterpolated.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/repeatingsequencestair.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/saturation.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/saturationdynamic.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/signalspecification.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/sum.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/add.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/subtract.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/sumofelements.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/switch.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brdguka-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html

 Data Management

New Diagnostic for Checking Signal Ranges During Simulation

In the Configuration Parameters dialog, the Diagnostics > Data Validity pane
contains a new diagnostic, Simulation range checking, which alerts you during
simulation when blocks output signals that exceed specified minimum or maximum
values (see “New Block Parameters for Specifying Minimum and Maximum Values” on
page 24-7). For more information about using this diagnostic, see Signal Ranges in
Simulink User's Guide.

24-9

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brdikno.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html

R2007b

Configuration Management

Disabled Library Link Management

The following new features help manage disabled library links and protect against
accidental loss of work:

• “Disabled Link” appears in the title bar of a Model Editor window that displays a
subsystem connected to a library by a disabled link.

• ToolTips for library-linked blocks include the link status as well as the destination
block for the link.

• New diagnostics warn when saving a model that contains disabled or parameterized
library links.

• New Model Advisor checks let you search for disabled or parameterized library links
in a model.

See Disabling Links to Library Blocks in Simulink User's Guide for more information.

Model Dependencies Tools

The model dependencies manifest tools have these new capabilities:

• Enhanced analysis to detect file dependencies from Stateflow transitions, Embedded
MATLAB functions, and requirements documents. See Scope of Dependency Analysis
in Simulink User's Guide.

• Model dependencies tools now save user manifest edits for reuse the next time a
manifest is generated. See Edit Manifests in Simulink User's Guide.

24-10

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brknh7w.html#brknicj-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bq2ifjj-1.html#brbi17x
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bq2ifjj-1.html#bq2ik39-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html

 Embedded Software Design

Embedded Software Design

Legacy Code Tool Enhancement

The Legacy Code Tool has been enhanced to allow the use of void* and void** to
declare variables that represent memory allocated for specific instances of items such as
file descriptors, device drivers, and memory managed externally.

For more information, see:

• Integrating Existing C Functions into Simulink Models with the Legacy Code Tool in
the Developing S-Functions

• legacy_code function documentation

24-11

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/bq4g1es-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/bsd99w_-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/legacy_code.html

R2007b

Block Enhancements

Product Block Reorders Inputs Internally

In previous releases, a Product block whose

• Number of inputs parameter begins with a divide character (/)
• Multiplication parameter specifies Element-wise(.*)

computes the reciprocal of its first input before multiplying or dividing by subsequent
inputs. For example, if a Product block specifies division for its first input, u1, and
multiplication for its second input, u2, previous versions of Simulink software compute

(1 / u1) * u2

In this release, the Product block internally reorders its first two inputs if particular
conditions apply, such that Simulink software now computes

u2 / u1

See the Product block documentation for more information.

Block Data Tips Now Work on All Platforms

In previous releases, block data tips worked only on Microsoft Windows platforms. In this
release, the data tips work on all platforms. Also, the data tip for a library link, even if
disabled, now includes the name of the library block it references.

Enhanced Data Type Support for Blocks

The following blocks now allow you to specify the data type of their outputs:

• Abs
• Multiport Switch
• Saturation
• Saturation Dynamic
• Switch

The following blocks now support single-precision floating-point inputs, outputs, and
parameter values:

24-12

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/product.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/abs.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/multiportswitch.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/saturation.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/saturationdynamic.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/switch.html

 Block Enhancements

• Discrete Filter
• Discrete State-Space
• Discrete Transfer Fcn

New Simulink Data Class Block Object Properties

The following properties have been added to the Simulink.BlockData class:

• AliasedThroughDataType
• AliasedThroughDataTypeID

New Break Link Options for save_system Command

The save_system command's BreakLink option has been replaced by two options:
BreakAllLinks and BreakUserLinks. The first option duplicates the behavior of the
obsolete BreakLink option, i.e., it replaces all library links, including links to Simulink
block libraries with copies of the referenced library blocks. The BreakUserLinks option
replaces only links to user-defined libraries.

Compatibility Considerations

The save_system command continues to honor the BreakLink option but displays a
warning message at the MATLAB command line that the option is deprecated.

Simulink Software Checks Data Type of the Initial Condition Signal of the
Integrator Block

When the output port of the Constant or IC block is connected to the Initial Condition
port of the Integrator block, Simulink software now compares the data type of the Initial
Condition input signal of the Integrator block with the Constant value parameter or
Initial value parameter of the Constant block or IC block, respectively.

Compatibility Considerations

If the data type for the output port of the Constant or IC blocks does not match the data
type of the Initial Condition input signal for the Integrator block, Simulink software
returns an error at compile time.

24-13

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretefilter.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretestatespace.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretetransferfcn.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.blockdata.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/save_system.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/constant.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/ic.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/integrator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/integrator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/constant.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/ic.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/constant.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/ic.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/integrator.html

R2007b

Usability Enhancements

Model Advisor

Model Advisor has been enhanced to navigate checks, display status, and report results.
Also, this release contains a new Model Advisor Checks reference.

Alignment Commands

This release contains new block alignment, distribution, and resize commands to align
groups of blocks along their edges, equalize interblock spacing, and resize blocks to be all
the same size. See Aligning, Distributing, and Resizing Groups of Blocks Automatically
in Simulink User's Guide for more information.

24-14

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/bq6d4aa.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brchq3m.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqchgnk.html

 S-Functions

S-Functions

New S-Function APIs to Support Singleton Dimension Handling

The following functions have been added:

• ssPruneNDMatrixSingletonDims
• ssGetInputPortDimensionSize
• ssGetOutputPortDimensionSize

See S-Function SimStruct Functions — Alphabetical List in Developing S-Functions for
more information.

New Level-2 M-File S-Function Example

This release includes a new Level-2 M-file S-function example in sfundemos.mdl. The
Simulink model msfcndemo_varpulse.mdl uses the S-function msfcn_varpulse.m to
create a variable-width pulse generator.

24-15

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/ssprunendmatrixsingletondims.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/ssgetinputportdimensionsize.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/ssgetoutputportdimensionsize.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/bqa667w.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/bsd99w_-1.html

R2007a+
Version: 6.6.1

Bug Fixes

R2007a
Version: 6.6

New Features

Bug Fixes

Compatibility Considerations

R2007a

Multidimensional Signals

This release includes support for multidimensional signals, including:

• Sourcing of multidimensional signals
• Logging or displaying of multidimensional signals
• Large-scale modeling applications, such as those from model referencing
• Buses and nonvirtual buses
• Code generation with Real-Time Workshop software
• S-functions, including Level-2 M-File S-functions
• Stateflow charts

For further details, see:

• “Multidimensional Signals in Simulink Blocks” on page 26-2
• “Multidimensional Signals in S-Functions” on page 26-4

Simulink software supports signals with up to 32 dimensions. Do not use signals with
more than 32 dimensions.

Multidimensional Signals in Simulink Blocks

The following blocks were updated to support multidimensional signals. See Signal
Dimensions in the Simulink documentation for further details.

• Abs
• Assignment
• Bitwise Operator
• Bus Assignment
• Bus Creator
• Bus Selector
• Compare to Constant
• Compare to Zero
• Complex to Magnitude-Angle
• Complex to Real-Imag
• Concatenate

26-2

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bst2z3h-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bst2z3h-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/abs.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/assignment.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/bitwiseoperator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/busassignment.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/buscreator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/busselector.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/comparetoconstant.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/comparetozero.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/complextomagnitudeangle.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/complextorealimag.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/concatenate.html

 S-Functions

• Constant
• Data Store Memory
• Data Store Read
• Data Store Write
• Data Type Conversion
• MATLAB Function (formally called Embedded MATLAB Function)
• Environment Controller
• From
• From Workspace
• Gain (only if the Multiplication parameter specifies Element-wise(K*u))
• Goto
• Ground
• IC
• Inport
• Level-2 MATLAB S-Function
• Logical Operator
• Magnitude-Angle to Complex
• Manual Switch
• Math Function (no multidimensional signal support for the transpose and

hermitian functions)
• Memory
• Merge
• MinMax
• Model
• Multiport Switch
• Outport
• Product, Product of Elements — only if the Multiplication parameter specifies

Element-wise

• Probe
• Random Number
• Rate Transition

26-3

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/constant.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/datastorememory.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/datastoreread.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/datastorewrite.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/datatypeconversion.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/matlabfunction.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/environmentcontroller.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/from.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/fromworkspace.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/gain.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/goto.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/ground.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/ic.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/inport.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/level2matlabsfunction.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/logicaloperator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/magnitudeangletocomplex.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/manualswitch.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/mathfunction.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/memory.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/merge.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/minmax.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/model.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/multiportswitch.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/outport.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/product.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/productofelements.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/probe.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/randomnumber.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/ratetransition.html

R2007a

• Real-Imag to Complex
• Relational Operator
• Reshape
• Scope, Floating Scope
• Selector
• S-Function
• Signal Conversion
• Signal Specification
• Slider Gain
• Squeeze
• Subsystem, Atomic Subsystem, CodeReuse Subsystem
• Add, Subtract, Sum, Sum of Elements — along specified dimension
• Switch
• Terminator
• To Workspace
• Trigonometric Function
• Unary Minus
• Uniform Random Number
• Unit Delay
• Width

The Block Support Table does not list which blocks support multidimensional
signals. To see if a block supports multidimensional signals, check for the entry
Multidimensionalized in the Characteristics table of a block.

Multidimensional Signals in S-Functions

To use multidimensional signals in S-functions, you must use the new SimStruct
function, ssAllowSignalsWithMoreThan2D.

Multidimensional Signals in Level-2 M-File S-Functions

To use multidimensional signals in Level-2 M-file S-functions, you must set the new
Simulink.MSFcnRunTimeBlock property, AllowSignalsWithMoreThan2D.

26-4

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/realimagtocomplex.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/relationaloperator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/reshape.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/scope.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/floatingscope.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/selector.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/sfunction.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/signalconversion.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/signalspecification.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slidergain.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/squeeze.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/subsystem.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/atomicsubsystem.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/codereusesubsystem.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/add.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/subtract.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/sum.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/sumofelements.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/switch.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/terminator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/toworkspace.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/trigonometricfunction.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/unaryminus.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/uniformrandomnumber.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/unitdelay.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/width.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/blocksupporttable.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/ssallowsignalswithmorethan2d.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.msfcnruntimeblock.html

 S-Functions

New Block Parameters

This release introduces the following common block parameters.

• PreCopyFcn: Allows you to assign a function to call before the block is copied. See
Block Callback Parameters in the Simulink documentation for details.

• PreDeleteFcn: Allows you to assign a function to call before the block is deleted. See
Block Callback Parameters in the Simulink documentation for details.

• StaticLinkStatus: Allows you to obtain the link status of a block without updating
out-of-date reference blocks See Checking and Setting Link Status Programmatically
in the Simulink documentation for details.

GNU Compiler Upgrade

This release upgrades the GNU® compiler to GCC 4.0.3 on Mac platforms and GCC 4.1.1
on Linux platforms. The Fortran runtime libraries for the previous GCC 3.x versions are
no longer included with MATLAB.

Compatibility Considerations

C, C++, or Fortran MEX-files built with the previous 3.x version of the GCC compiler are
not guaranteed to load in this release. Rebuild the source code for these S-functions using
the new version of the GCC compiler.

Changes to Concatenate Block

This release includes the following changes to the Concatenate block:

• Its Mode parameter provides two settings, namely, Vector and Multidimensional
array.

• Its parameter dialog box contains a new option, Concatenate dimension, specifying
the output dimension along which to concatenate the input arrays.

• The block displays a new icon when its Mode parameter is set to Multidimensional
array.

This release updates Concatenate blocks when loading models created in previous
releases.

26-5

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-122589.html#f4-93098
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-122589.html#f4-93098
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brknh7w.html#brknia1-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/concatenate.html

R2007a

Changes to Assignment Block

This release includes the following changes to the Assignment block:

• Enter the number of dimensions in the Number of output dimensions parameter,
then configure the input and output with the Index Option, Index, and Output
Size parameters.

• The parameter dialog box has the following new parameters:

• Number of output dimensions
• Index Option
• Index
• Output Size

• The Initialize output (Y) parameter replaces Output (Y) and has renamed options.
• The Action if any output element is not assigned parameter replaces

Diagnostic if not all required dimensions populated.
• The block displays a new icon depending on the value of Number of input

dimensions and the Index Option settings.

The following parameters are obsolete:

• Input type
• Use index as start value
• Source of element indices
• Elements
• Source of row indices
• Rows
• Source of column indices
• Columns
• Output dimensions

This release updates Assignment blocks when loading models created in previous
releases.

Changes to Selector Block

This release includes the following changes to the Selector block:

26-6

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/assignment.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/selector.html

 S-Functions

• Enter the number of dimensions in the Number of input dimensions parameter,
then configure the input and output with the Index Option, Index, and Output
Size parameters.

• The parameter dialog box has the following new parameters:

• Number of input dimensions
• Index Option
• Index
• Output Size

• The behavior of the Sample time parameter has changed. See the Selector block
Sample time parameter for details.

• The block displays a new icon depending on the value of Number of input
dimensions and the Index Option settings.

The following parameters are obsolete:

• Input type
• Use index as starting value
• Source of row indices
• Rows
• Source of column indices
• Columns
• Output port dimensions

This release updates Selector blocks when loading models created in previous releases.

Improved Model Advisor Navigation and Display

This release improves the Model Advisor graphical user interface (GUI) for navigating
lists of checks and viewing the status of completed checks. While Model Advisor
functionality and content are largely unchanged from R2006b, the Model Advisor checks
display and are navigated differently than in previous versions, and the generated Model
Advisor report, if requested, displays in a MATLAB web browser window that is separate
from the Model Advisor GUI.

To exercise the new features, open Model Advisor for a model (for example, enter
modeladvisor('vdp') at the MATLAB command line) and then follow the instructions

26-7

R2007a

in the Model Advisor window. For more information about Model Advisor navigation and
display, see Consulting the Model Advisor in the Simulink documentation.

Change to Simulink.ModelAdvisor.getModelAdvisor Method

In this release, when using the getModelAdvisor method defined by the
Simulink.ModelAdvisor class to change Model Advisor working scope to a different
model, you must either close the previous model or invoke the getModelAdvisor
method with 'new' as the second argument. For example, if you previously set scope to
modelX with

Obj = Simulink.ModelAdvisor.getModelAdvisor('modelX');

and you want to change scope to modelY, you must either close modelX or use

Obj = Simulink.ModelAdvisor.getModelAdvisor('modelY', 'new');

If you try to change scope between models without the 'new' argument, an error
message is displayed.

Compatibility Considerations

In previous releases, you could change Model Advisor working scope without closing the
current session. This is no longer allowed.

If your code contains a code pattern such as the following,

Obj = Simulink.ModelAdvisor.getModelAdvisor('modelX');

...

Obj = Simulink.ModelAdvisor.getModelAdvisor('modelY');

you must add the 'new' argument to the second and subsequent invocations of
getModeladvisor. For example:

Obj = Simulink.ModelAdvisor.getModelAdvisor('modelX');

...

Obj = Simulink.ModelAdvisor.getModelAdvisor('modelY', 'new');

Alternatively, you can close ModelX before issuing
Simulink.ModelAdvisor.getModelAdvisor('modelY').

26-8

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141979.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.modeladvisor.html

 S-Functions

New Simulink Blocks

This release introduces the following blocks:

• The Permute Dimensions block enables you to rearrange the dimensions of a
multidimensional signal.

• The Squeeze block enables you to remove singleton dimensions from a
multidimensional signal.

Change to Level-2 MATLAB S-Function Block

If a model includes a Level-2 MATLAB S-Function block, and an error occurs in the S-
function, the Level-2 M-File S-Function block will display M-file stack trace information
for the error in a dialog box. Click OK to remove the dialog box. In previous releases, this
block did not display the stack trace information.

Model Dependency Analysis

The model dependencies manifest tools identify files required by your model. You can list
required files in a 'manifest' file, package the model with required files into a ZIP file, or
compare two file manifests.

See Model Dependencies for more information.

Model File Monitoring

• Warnings if a model file is changed on disk by another user or application while
the model is loaded in Simulink software. (see Model File Change Notification in
Managing Model Versions).

• Warning to notify the user if multiple models or libraries with the same name exist,
as Simulink software may not be using the one the user expects. (see Shadowed Files).

Legacy Code Tool Enhancements

• New fields in the Legacy Code Tool data structure:
InitializeConditionsFcnSpec and SampleTime.
InitializeConditionsFcnSpec defines a function specification for a reentrant
function that the S-function calls to initialize and reset states. SampleTime allows

26-9

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/permutedimensions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/squeeze.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/level2matlabsfunction.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bq2ifjj-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-146273.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bra55xr.html#bq223wu-1

R2007a

you to specify whether sample time is inherited from the source block, represented as
a tunable parameter, or fixed.

• Support for state (persistent memory) arguments in registered function specifications.
• Support for complex numbers specified for input, output, and parameter arguments

in function specifications. This support is limited to use with Simulink built-in data
types.

• Support for multidimensional arrays specified for input and output arguments
in function specifications. Previously, multidimensional array support applied to
parameters only.

• Ability to apply the size function to any dimension of function input data—input,
output, parameter, or state. The data type of the size function's return value can be
any type except complex, bus, or fixed-point.

• A new Legacy Code Tool option, 'backward_compatibility', which you can
specify with the legacy_code function. This option enables Legacy Code Tool syntax,
as made available from MATLAB Central in releases prior to R2006b, for a given
MATLAB session.

• The following new demos:
sldemo_lct_sampletime
sldemo_lct_work
sldemo_lct_cplxgain
sldemo_lct_ndarray

For more information, see

• Integrating Existing C Functions into Simulink Models with the Legacy Code Tool in
the Writing S-Functions documentation

• Integrate External Code Using Legacy Code Tool in the Real-Time Workshop
documentation

• legacy_code function reference page

Compatibility Considerations

If you are using a version of the Legacy Code Tool that was accessible from MATLAB
Central before R2006b, the syntax for using the tool differs from the syntax currently
supported by Simulink software. To continue using the old style syntax, for example,
legacy_code_initialize.m, issue the following call to legacy_code for a given
MATLAB session:

26-10

http://www.mathworks.com/help/releases/R2012a/techdoc/ref/size.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/bq4g1es-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bq4fyia.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/legacy_code.html

 S-Functions

legacy_code('backward_compatibility');

Continuous State Names

State names can now be assigned in those blocks that employ continuous states. The
names are assigned with the ContinuousStateAttributes Block-Specific Parameters
parameter, or in the Blocks Parameter dialog box.

The following blocks support continuous state names:

• Integrator
• State-Space
• Transfer Fcn
• Variable Transport Delay
• Zero-Pole

Logging of continuous states is illustrated in the sldemo_hydrod demo.

Changes to Embedded MATLAB Function Block

This release introduces the following changes to the Embedded MATLAB Function block:

• “New Function Checks M-Code for Compliance with Embedded MATLAB Subset” on
page 26-11

• “Support for Multidimensional Arrays” on page 26-12
• “Support for Function Handles” on page 26-12
• “Enhanced Support for Frames” on page 26-12
• “New Embedded MATLAB Runtime Library Functions” on page 26-12
• “Using & and | Operators in Embedded MATLAB Function Blocks” on page 26-14
• “Calling get Function from Embedded MATLAB Function Blocks” on page 26-15
• “Documentation on Embedded MATLAB Subset has Moved” on page 26-15

New Function Checks M-Code for Compliance with Embedded MATLAB Subset

Embedded MATLAB function blocks introduce a new function, Embedded MATLAB
MEX (emlmex), that checks M-code for compliance with the syntax and semantics of
the Embedded MATLAB subset. You can add Embedded MATLAB-compliant code to

26-11

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/f23-20073.html

R2007a

Embedded MATLAB Function blocks and Truth Table blocks in Simulink models. For
more information, see “Working with Embedded MATLAB MEX” in the Embedded
MATLAB documentation.

Support for Multidimensional Arrays

Embedded MATLAB Function blocks now support multidimensional signals and
parameter data, where the number of dimensions can be greater than 2. This feature
is fully integrated with support for multidimensional signals in Simulink software.
Supported functions in the Embedded MATLAB Run-Time Function Library have been
enhanced to handle multidimensional data.

Support for Function Handles

Embedded MATLAB Function blocks now support function handles for invoking
functions indirectly and parameterizing operations that you repeat frequently in your
code. For more information, see the section on using function handles in About Code
Generation from MATLAB Algorithms in the Embedded MATLAB documentation.

Enhanced Support for Frames

Embedded MATLAB Function blocks can now input and output frame-based signals
directly in Simulink models. You no longer need to attach Frame Conversion blocks to
inputs and outputs to achieve this functionality. See Working with Frame-Based Signals
in the Simulink documentation.

New Embedded MATLAB Runtime Library Functions

Embedded MATLAB Function blocks provide 31 new runtime library functions in the
following categories:

• “Casting Functions” on page 26-13
• “Derivative and Integral Functions” on page 26-13
• “Discrete Math Functions” on page 26-13
• “Exponential Functions” on page 26-13
• “Filtering and Convolution Functions” on page 26-13
• “Logical Operator Functions” on page 26-13
• “Matrix and Array Functions” on page 26-13
• “Polynomial Functions” on page 26-14

26-12

http://www.mathworks.com/help/releases/R2012a/toolbox/eml/ug/bq1h2z5-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/eml/ug/bq1h2z5-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bq50541.html

 S-Functions

• “Set Functions” on page 26-14
• “Specialized Math” on page 26-14
• “Statistical Functions” on page 26-14

See the Embedded MATLAB Run-Time Function Library for a list of all supported
functions.

Casting Functions

• typecast

Derivative and Integral Functions

• cumtrapz
• trapz

Discrete Math Functions

• nchoosek

Exponential Functions

• expm

Filtering and Convolution Functions

• conv2
• deconv
• detrend
• filter2

Logical Operator Functions

• xor

Matrix and Array Functions

• cat
• flipdim
• normest
• rcond

26-13

http://www.mathworks.com/help/releases/R2012a/techdoc/ref/typecast.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/cumtrapz.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/trapz.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/nchoosek.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/expm.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/conv2.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/deconv.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/detrend.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/filter2.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/xor.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/cat.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/flipdim.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/normest.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/rcond.html

R2007a

• sortrows

Polynomial Functions

• poly

Set Functions

• issorted

Specialized Math

• beta
• betainc
• betaln
• ellipke
• erf
• erfc
• erfcinv
• erfcx
• erfinv
• expint
• gamma
• gammainc
• gammaln

Statistical Functions

• mode

Using & and | Operators in Embedded MATLAB Function Blocks

Embedded MATLAB Function blocks no longer support & and | operators in if and
while conditional statements.

Compatibility Considerations

In prior releases, these operators compiled without error, but their short-circuiting
behavior was not implemented correctly. Substitute && and || operators instead.

26-14

http://www.mathworks.com/help/releases/R2012a/techdoc/ref/sortrows.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/poly.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/issorted.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/beta.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/betainc.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/betaln.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/ellipke.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/erf.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/erfc.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/erfcinv.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/erfcx.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/erfinv.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/expint.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/gamma.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/gammainc.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/gammaln.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/mode.html

 S-Functions

Calling get Function from Embedded MATLAB Function Blocks

Embedded MATLAB Function blocks now support the Simulink Fixed Point get function
for returning the properties of fi objects.

Compatibility Considerations

To get properties of non-fixed-point objects in Embedded MATLAB Function blocks,
you must first declare get to be an extrinsic function; otherwise, your code will error.
For more information refer to Calling MATLAB Functions in the Embedded MATLAB
documentation.

Documentation on Embedded MATLAB Subset has Moved

Documentation on the Embedded MATLAB subset and its syntax, semantics, and
supported functions has moved out of the Simulink Reference. See Code Generation from
MATLAB User's Guide for the new Embedded MATLAB documentation.

Referenced Models Support Non-Zero Start Time

The simulation start time of all models in a model reference hierarchy was previously
required to be 0. Now the simulation start time can be nonzero. The start time of all
models in a model reference hierarchy must be the same. See Referencing a Model and
Specifying a Simulation Start and Stop Time for information about these capabilities.
See “Referencing Configuration Sets” on page 26-18 for information about a
convenient way to give all models in a hierarchy the same configuration parameters,
including simulation start time.

New Functions Copy a Model to a Subsystem or Subsystem to Model

Two new functions exist that you can use to copy contents between a block diagram and a
subsystem.

Simulink.BlockDiagram.copyContentsToSubSystem
Copies the contents of a block diagram to an empty subsystem.

Simulink.SubSystem.copyContentsToBlockDiagram
Copies the contents of a subsystem to an empty block diagram.

For details, see the reference documentation for each function.

26-15

http://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/ref/get.html
http://www.mathworks.com/help/releases/R2012a/toolbox/eml/ug/bq1h2z9-38.html
http://www.mathworks.com/help/releases/R2012a/toolbox/eml/ug/bq1h2z5-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/eml/ug/bq1h2z5-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141721.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f11-39889.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.blockdiagram.copycontentstosubsystem.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.subsystem.copycontentstoblockdiagram.html

R2007a

New Functions Empty a Model or Subsystem

Two new functions exist that you can use to delete the contents of a block diagram or
subsystem.

Simulink.BlockDiagram.deleteContents
Deletes the contents of a block diagram.

Simulink.SubSystem.deleteContents
Deletes the contents of a subsystem.

For details, see the reference documentation for each function.

26-16

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.blockdiagram.deletecontents.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.subsystem.deletecontents.html

 S-Functions

Default for Signal Resolution Parameter Has Changed

In the Configuration Parameters dialog, Diagnostics > Data Validity pane,
the default setting for Signal resolution is now Explicit only. Previously, the
default was Explicit and warn implicit. Equivalently, the default value of the
SignalResolutionControl parameter is now UseLocalSettings (previously
TryResolveAllWithWarnings). See Diagnostics Pane: Data Validity for more
information.

Compatibility Considerations

Due to this change, labeling a signal is no longer enough to cause it to resolve by default
to a signal object. You must also do one of the following:

• In the signal's Signal Properties dialog, select Signal name must resolve to
Simulink data object and specify a Simulink.Signal object in the Signal name
field. Simulink software then resolves that signal to that signal object.

• In the Configuration Parameters dialog, set Diagnostics > Data Validity > Signal
resolution to Explicit and warn implicit (to post warnings) or Explicit and
implicit (to suppress warnings). Simulink software then resolves all labeled signals
to signal objects by matching their names, posting a warning of each resolution if so
directed.

Models built in R2007a will default to Explicit only. Models created in previous
versions will retain the Signal resolution value with which they were saved, and
will run as they did before. New models may therefore behave differently from existing
models that retain the previous default behavior. To specify the previous default behavior
in a new model, change Signal resolution to Explicit and warn implicit.

Conversion Function

MathWorks discourages using implicit signal resolution except for fast
prototyping, because implicit resolution slows performance, complicates model
validation, and can have nondeterministic effects. Simulink software provides the
disableimplicitsignalresolution function, which you can use to change settings
throughout a model so that it does not use implicit signal resolution. See the function's
reference documentation, or type:

help disableimplicitsignalresolution

in the MATLAB Command Window.

26-17

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq8t6qh.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.signal.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/disableimplicitsignalresolution.html

R2007a

Referencing Configuration Sets

This release provides configuration references (Simulink.ConfigSetRef class), which
you can use to link multiple models to a configuration set stored on the base workspace.
All of those models then share the same configuration set, and therefore have the same
configuration parameter values. Changing a parameter value in a shared configuration
set changes that value for every model that uses the set. With configuration references,
you can:

• Assign the same configuration set to any number of models
• Replace the configuration sets of any number of models without changing the model

files
• Use different configuration sets for a referenced model in different contexts without

changing the model file

See Manage a Configuration Set and Manage a Configuration Reference for more
information.

Compatibility Considerations

You cannot change configuration parameter values by operating directly on a
configuration reference as you can a configuration set. Instead, you must use the
configuration reference to retrieve the configuration set and operate on the set. If you
reconfigure a model to access configuration parameters using a configuration reference,
you must update any scripts that change parameter values to incorporate the extra step
of obtaining the configuration set from the reference before changing the values. See
Create a Freestanding Configuration Set at the Command Line for details.

New Block, Model Advisor Check, and Utility Function for Bus to Vector
Conversion

When the diagnostic Configuration Parameters > Connectivity > Buses > Bus
signal treated as vector is disabled or none, you can input a homogeneous virtual
bus to many blocks that accept vectors but are not formally defined as accepting buses.
Simulink software transparently converts the bus to a vector, allowing the block to accept
the bus.

However, MathWorks discourages intermixing buses and vectors, because such mixtures
cause ambiguities that preclude strong type checking. The practice may become
unsupported at some future time, and should not be used in new applications.

26-18

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f11-35796.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bq2wh78-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bs4pvp4.html#bq2wh78-2

 S-Functions

Simulink software provides diagnostics that report cases where buses are mixed with
vectors, and includes capabilities that you can use to upgrade a model to eliminate such
mixtures, as described in the following sections of the Simulink documentation:

• Using Composite Signals — A new chapter in R2007a that describes the specification
and use of composite signals.

• Avoiding Mux/Bus Mixtures — Ambiguities that arise when composite signal types
are intermixed, and the tools available for eliminating such mixtures.

• Using Diagnostics for Mux/Bus Mixtures — Two diagnostic options for detecting
mixed composite signals: Mux blocks used to create bus signals and Bus signal
treated as vector.

• Using the Model Advisor for Mux/Bus Mixtures — Model Advisor checks that detect
mixed composite signals and recommend alternatives.

• Bus to Vector — A block that you can insert into a bus used implicitly as a vector to
explicitly convert the bus to a vector.

• Simulink.BlockDiagram.addBusToVector — A function that creates a report of every
bus used implicitly as a vector, and optionally inserts a Bus to Vector block into every
such bus, replacing the implicit use with an explicit conversion.

Enhanced Support for Tunable Parameters in Expressions

Expressions that index into tunable parameters, such as P(1)+P(2)/P(i), retain their
tunability in generated code, including simulation code that is generated for a referenced
model. Both the indexed parameter and the index itself can be tuned.

Parameter expressions of the form P(i) retain their tunability if all of the following are
true:

• The index i is a constant or variable of double datatype
• P is a 1D array, or a 2D array with one row or one column, of double datatype
• P does not resolve to a mask parameter, but to a variable in the model or the base

workspace

New Loss of Tunability Diagnostic

Previously, any loss of tunability generated a warning. In R2007a, you can use the Loss
of Tunability diagnostic to control whether loss of tunability is ignored or generates a
warning or error. See Detect loss of tunability for details.

26-19

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bq4h5ej.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bq4jp6i.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bq4jp6i.html#bq4sgg_
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq8t6s8.html#bq8t67c-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq8t6s8.html#bq8t66m-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq8t6s8.html#bq8t66m-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bq4jp6i.html#bq4skrv-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/bustovector.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.blockdiagram.addbustovector.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq8t6qh.html#bq_oiu7-1

R2007a

Port Parameter Evaluation Has Changed

Previously, resolution of port parameters of a masked subsystem began within the
subsystem, which could violate the integrity of the mask. For example, if a subsystem
mask defines parameter A, and a port of the subsystem uses A to set some port attribute,
resolving A by starting within the masked block makes A externally visible, though it
should be visible only within the mask.

To fix this problem, in R2007a masked subsystem port parameter resolution starts
in the containing system rather than within the masked subsystem, then proceeds
hierarchically upward as it did before. This change preserves the integrity of the masked
subsystem, but can change model behavior if any subsystem port previously depended for
resolution on a variable defined within the mask.

Compatibility Considerations

A model whose ports did not reference variables defined within a mask are unaffected. A
model that resolved any port parameter by accessing a variable within a masked block
may behave differently or become vulnerable to future changes in behavior, as follows:

• If the port parameter's value cannot be evaluated, because the evaluation would
require access to a variable defined only within the mask, an error occurs.

• If an appropriate variable exists outside the mask but has a different value than the
corresponding variable within the mask, no error occurs, but model behavior may
change.

• If an appropriate variable exists and has the same value inside and outside the mask,
no behavioral change occurs, but later changes to the variable outside the mask may
have unexpected effects.

To ensure correct results, change the model as needed so that any port parameter that
previously depended on any variables defined within a mask give the intended results
using the new resolution search path.

Data Type Objects Can Be Passed Via Mask Parameters

Previously, if a masked subsystem contained a block that needed to specify a data type
using a data type object, the block could access the object only in the base workspace.
The data type object could not be passed into the subsystem through a mask parameter.
Parameterizing data types used by blocks under a mask was therefore not possible.

26-20

 S-Functions

To support parameterized data types inside masked subsystems, you can now use a mask
parameter to pass a data type object into a subsystem. Blocks in the subsystem can then
use the object to specify data types under the mask.

Expanded Options for Displaying Subsystem Port Labels

This release provides an expanded set of options for displaying port labels on a
subsystem block. The options include displaying:

• The label on the corresponding port block
• The name of the corresponding port block
• The name of the signal connected to the corresponding block

See the documentation for the Show Port Labels option on the Subsystem block's
parameter dialog box for more information.

Model Explorer Customization Option Displays Properties of Selected
Object

This release introduces a Selection Properties node to the Model Explorer's
Customize Contents pane. The node allows you to customize the Model Explorer's
Contents pane to display only the properties of the currently selected object. See The
Model Explorer: Overview for more information.

Change to PaperPositionMode Parameter

In this release, when exporting a diagram as a graphic with the PaperPositionMode
model parameter set to auto, Simulink software sizes the exported graphic to be the
same size as the diagram's image on the screen when viewed at normal size. When
PaperPositionMode is set to manual, Simulink software sizes the exported image to have
the height and width specified by the model's PaperPosition parameter.

Compatibility Considerations

In previous releases, a model's PaperPosition parameter determined the size of the
exported graphic regardless of the setting of the model's PaperPositionMode parameter.

26-21

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/subsystem.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsf8967-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsf8967-1.html

R2007a

To reproduce the behavior of previous releases, set the PaperPositionMode parameter to
manual.

New Simulink.Bus.objectToCell Function

A new function, Simulink.Bus.objectToCell, is available for converting bus objects
to a cell array that contains bus information. For details, see the description of
Simulink.Bus.objectToCell.

Simulink.Bus.save Function Enhanced To Allow Suppression of Bus Object
Creation

The Simulink.Bus.save function has been enhanced such that when using the 'cell'
format you have the option of suppressing the creation of bus objects when the saved M-
file executes. To suppress bus object creation, specify the optional argument 'false'
when you execute the saved M-file.

For more detail, see the description of Simulink.Bus.save.

Change in Version 6.5 (R2006b) Introduced Incompatibility

A change introduced in Version 6.5 (R2006b) introduces an incompatibility between this
release and releases preceding Version 6.5 (R2006b). See “Attempting to Reference a
Symbol in an Uninitialized Mask Workspace Generates an Error” on page 27-6 for
more information.

Nonverbose Output During Code Generation

Simulink Accelerator now defaults to nonverbose output when generating code. A new
parameter, AccelVerboseBuild, has been added to control how much information is
displayed. See Customizing the Build Process for more information.

SimulationMode Removed From Configuration Set

Previously, the SimulationMode property was attached to the configuration set for a
model. In R2007a, the property has been removed from the configuration set. Now you
set the simulation mode for the model using the Simulation menu in the model window
or the set_param function with the SimulationMode model parameter.

26-22

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.bus.objecttocell.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.bus.objecttocell.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.bus.save.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.bus.save.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brah7z_-19.html#brah7z_-20
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/set_param.html

 S-Functions

Compatibility Considerations

Using Simulink.ConfigSet.SimulationMode is not recommended. Use
set_param(modelName,'SimulationMode',value) instead.

26-23

R2006b
Version: 6.5

New Features

Bug Fixes

Compatibility Considerations

R2006b

Model Dependency Viewer

The Model Dependency Viewer displays a dependency view of a model that shows models
and block libraries directly or indirectly referenced by the model. The dependency view
allows you to quickly determine your model's dependencies on referenced models and
block libraries. See Model Dependencies for more information.

Enhanced Lookup Table Blocks

This release replaces the PreLookup Index Search and Interpolation (n-D) Using
PreLookup blocks with two new blocks: Prelookup and Interpolation Using Prelookup.
The new blocks provide fixed-point arithmetic, consistency checking, more efficient code
generation, and other enhancements over the blocks they replace.

Compatibility Considerations

MathWorks plans on obsoleting the PreLookup Index Search and Interpolation (n-D)
Using PreLookup blocks in a future release. In the meantime, MathWorks will continue
to support and enhance these blocks. For example, this release improves the precision
with which the PreLookup Index Search block computes its fraction value if its Index
search method parameter specifies Evenly Spaced Points.

We recommend that you use the Prelookup and Interpolation Using Prelookup blocks for
all new model development.

Legacy Code Tool

The Legacy Code Tool generates an S-function from existing C code and specifications
that you supply. It enables you to transform your C functions into C MEX S-functions
for inclusion in a Simulink model. See Integrating Existing C Functions into Simulink
Models with the Legacy Code Tool in Developing S-Functions for more information.

Simulink Software Now Uses Internal MATLAB Functions for Math
Operations

In previous releases, Simulink software used the host compiler's C++ Math Library
functions to perform most mathematical operations on floating-point data. Some of those
functions produced results that were slightly inconsistent with MATLAB results. In this
release, Simulink software calls the same internal routines that MATLAB calls for most
trigonometric, exponential, and rounding and remainder operations involving floating-

27-2

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bq2ifjj-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/prelookup.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/interpolationusingprelookup.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/bq4g1es-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/bq4g1es-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/sfg/bsd99w_-1.html

 S-Functions

point data. This ensures that when Simulink and MATLAB products operate on the same
platform, they produce the same numerical results.

In particular, Simulink software now performs mathematical operations with the same
internal functions that MATLAB uses to implement the following M-functions:

• sin, cos, tan
• asin, acos, atan, atan2
• sinh, cosh, tanh
• asinh, acosh, atanh
• log, log2, log10
• mod, rem
• power

Note: By default, in this release Real-Time Workshop software continues to use C Math
Library functions in the code that it generates from a Simulink model.

Enhanced Integer Support in Math Function Block

The sqrt operation in the Math Function block now supports built-in integer data types.

Configuration Set Updates

This release includes the following changes to model configuration parameters and
configuration sets.

• This release includes a new command, openDialog, that displays the Configuration
Parameters dialog box for a specified configuration set. This command allows display
of configuration sets that are not attached to any model.

• The attachConfigSet command now includes an allowRename option that determines
how the command handles naming conflicts when attaching a configuration set to a
model.

• This release includes a new attachConfigSetCopy command that attaches a copy of a
specified configuration set to a model.

• The new Sample hit time adjusting diagnostic controls whether Simulink software
notifies you when the solver has to adjust a sample time specified by your model to
solve the model. The associated model parameter is TimeAdjustmentMsg.

27-3

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/mathfunction.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/opendialog.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/attachconfigset.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/attachconfigsetcopy.html

R2006b

• The default value of the Multitask data store diagnostic has changed from Warning
to Error for new models. This change does not affect existing models.

• The name of the Block reduction optimization parameter has changed to Block
reduction.

Command to Initiate Data Logging During Simulation

The command

set_param(bdroot, 'SimulationCommand', 'WriteDataLogs')

writes all logging variables during simulation. See Exporting Signal Data Using Signal
Logging for more information.

Commands for Obtaining Model and Subsystem Checksums

This release includes commands for obtaining model and subsystem checksums.

• Simulink.BlockDiagram.getChecksum

Get checksum for a model. Simulink Accelerator software uses this checksum to
control regeneration of simulation targets. You can use this command to diagnose
target rebuild problems.

• Simulink.SubSystem.getChecksum

Get checksum for a subsystem. Real-Time Workshop software uses this checksum
to control reuse of code generated from a subsystem that occurs more than once in a
model. You can use the checksum to diagnose code reuse problems. See Determine
Why Subsystem Code Is Not Reused.

Sample Hit Time Adjusting Diagnostic

The Sample hit time adjusting diagnostic controls whether Simulink software notifies
you when the solver has to adjust a sample time specified by your model to solve the
model. The associated model parameter is TimeAdjustmentMsg.

Function-Call Models Can Now Run Without Being Referenced

This release allows you to simulate a function-call model, i.e., a model that contains a
root-level function-call trigger block, without having to reference the model. In previous

27-4

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsxca4i-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsxca4i-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.blockdiagram.getchecksum.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.subsystem.getchecksum.html
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bs61hg7.html#bqvqrii
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bs61hg7.html#bqvqrii

 S-Functions

releases, the function-call model had to be referenced by another model in order to be
simulated.

Signal Builder Supports Printing of Signal Groups

This release adds printing options to the Signal Builder block's editor. It allows you
to print waveforms displayed in the editor to a printer, file, the clipboard, or a figure
window. For details, see Printing, Exporting, and Copying Waveforms.

Method for Comparing Simulink Data Objects

This release introduces an isContentEqual method for Simulink data objects that
allows you to determine whether a Simulink data object has the same property values as
another Simulink data object. For more information, see Comparing Data Objects.

Unified Font Preferences Dialog Box

In this release, the Simulink Preferences dialog box displays font settings for blocks,
lines, and annotations on a single pane instead of on separate tabbed panes as in
previous releases. This simplifies selection of font preferences.

Limitation on Number of Referenced Models Eliminated for Single
References

In previous releases, all distinct models referenced in a model hierarchy counted against
the limitation imposed by Microsoft Windows on the number of distinct referenced
models that can occur in a hierarchy. In this release, models configured to be instantiable
only once do not account against this limit. This means that a model hierarchy can
reference any number of distinct models on Windows platforms as long as they are
referenced only once and are configured to be instantiable only once (see Model
Referencing Limitations for more information).

Parameter Objects Can Now Be Used to Specify Model Configuration
Parameters

This release allows you to use Simulink.Parameter objects to specify model configuration
as well as block parameters. For example, you can specify a model's fixed step size as Ts

27-5

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/signalbuilder.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f15-109640.html#bqu0w6f
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f14-90636.html#bquvl6q
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqonbts-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqonbts-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.parameter.html

R2006b

and its stop time as 20*Ts where Ts is a workspace variable that references a parameter
object. When compiling a model, Simulink software replaces a reference to a parameter
object in a model configuration parameter expression with the object's value.

Compatibility Considerations

In previous releases, you could use expressions of the form p.Value(), where p
references a parameter object, in model configuration parameter expressions. Such
expressions cause expression evaluation errors in this release when you compile a model.
You should replace such expressions with a simple reference to the parameter object
itself, i.e., replace p.Value() with p.

Parameter Pooling Is Now Always Enabled

In previous releases, the Parameter Pooling optimization was optional and was
enabled by default. Due to internal improvements, disabling Parameter Pooling would
no longer be useful in any context. The optimization is therefore part of standard R2006b
operation, and has been removed from the user interface.

Compatibility Considerations

Upgrading a model to R2006b inherently provides the effect that enabling Parameter
Pooling did in previous releases. No compatibility considerations result from this
change. If the optimization was disabled in an existing model, a warning is generated
when the model is first upgraded to R2006b. This warning requires no action and can be
ignored.

Attempting to Reference a Symbol in an Uninitialized Mask Workspace
Generates an Error

In this release, attempting to reference an symbol in an uninitialized mask workspace
generates an error. This can happen, for example, if a masked subsystem's initialization
code attempts to set a parameter of a block that resides in a masked subsystem in the
subsystem being initialized and one or more of the block's parameters reference variables
defined by the mask of the subsystem in which it resides (see Initialization Command
Limitations for more information).

27-6

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/f8-11110.html#bq4qu5_
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/f8-11110.html#bq4qu5_

 S-Functions

Compatibility Considerations

In this release, updating or simulating models created in previous releases may generate
unresolvable symbol error messages. This can happen if the model contains masked
subsystems whose initialization code sets parameters on blocks residing in lower-level
masked subsystems residing in the top-level masked subsystem. To eliminate these
errors, change the initialization code to avoid the use of set_param commands to set
parameters in lower-level masked subsystems. Instead, use mask variables in upper-
level masked subsystems to specify the values of parameters of blocks residing in lower-
level masked subsystems. See Defining Mask Parameters for information on using mask
variables to specify block parameter values.

Changes to Integrator Block's Level Reset Options

This release changes the behavior of the level reset option of the Integrator block. In
releases before Simulink 6.3, the level reset option resets the integrator's state if the
reset signal is nonzero or changes from nonzero in the previous time step to zero in the
current time step. In Simulink 6.3, 6.4, and 6.4.1, the option resets the integrator only
if the reset signal is nonzero. This release restores the level reset behavior of releases
that preceded Simulink 6.3. It also adds a level hold option that behaves like the
level reset option of Simulink 6.3, 6.4, and 6.4.1.

Compatibility Considerations

A model that uses the level reset option could produce results that differ in this release
from those produced in Simulink 6.3, 6.4, and 6.4.1. To reproduce the results of previous
releases, change the model to use the new level hold option instead.

Embedded MATLAB Function Block Features and Changes

Support for Structures

You can now define structures as inputs, outputs, local, and persistent variables in
Embedded MATLAB Function blocks. With support for structures, Embedded MATLAB
Function blocks give you the ability to read and write Simulink bus signals at inputs
and outputs of Embedded MATLAB Function blocks. See “Using Structures” in the
Embedded MATLAB documentation.

27-7

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brx7xj4.html#bsp2z2g-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/integrator.html

R2006b

Embedded MATLAB Editor Analyzes Code with M-Lint

The Embedded MATLAB Editor uses the MATLAB M-Lint Code Analyzer to
automatically check your Embedded MATLAB function code for errors and recommend
corrections. The editor displays an M-Lint bar that highlights offending lines of code and
displays Embedded MATLAB diagnostics as well as MATLAB messages. See “Using M-
Lint with Embedded MATLAB” in the Embedded MATLAB documentation.

New Embedded MATLAB Runtime Library Functions

Embedded MATLAB Function blocks provide 36 new runtime library functions in the
following categories:

• “Data Analysis” on page 27-8
• “Discrete Math” on page 27-8
• “Exponential” on page 27-8
• “Interpolation and Computational Geometry” on page 27-9
• “Linear Algebra” on page 27-9
• “Logical” on page 27-9
• “Specialized Plotting” on page 27-10
• “Transforms” on page 27-10
• “Trigonometric” on page 27-10

Data Analysis

• cov
• ifftshift
• std
• var

Discrete Math

• gcd

• lcm

Exponential

• expm1

27-8

http://www.mathworks.com/help/releases/R2012a/techdoc/ref/cov.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/ifftshift.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/std.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/var.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/gcd.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/lcm.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/expm1.html

 S-Functions

• log10
• log1p
• log2
• nextpow2
• nthroot
• reallog
• realpow
• realsqrt

Interpolation and Computational Geometry

• cart2pol
• cart2sph
• pol2cart
• sph2cart

Linear Algebra

• cond
• det
• ipermute
• kron
• permute
• planerot
• rand
• randn
• rank
• shiftdim
• squeeze
• subspace
• trace

Logical

• isstruct

27-9

http://www.mathworks.com/help/releases/R2012a/techdoc/ref/log10.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/log1p.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/log2.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/nextpow2.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/nthroot.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/reallog.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/realpow.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/realsqrt.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/cart2pol.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/cart2sph.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/pol2cart.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/sph2cart.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/cond.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/det.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/ipermute.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/kron.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/permute.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/planerot.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/rand.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/randn.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/rank.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/shiftdim.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/squeeze.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/subspace.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/trace.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/isstruct.html

R2006b

Specialized Plotting

• histc

Transforms

• bitrevorder

Trigonometric

• hypot

New Requirement for Calling MATLAB Functions from Embedded MATLAB Function Blocks

To call external MATLAB functions from Embedded MATLAB Function blocks, you must
first declare the functions to be extrinsic. (External MATLAB functions are functions
that have not been implemented in the Embedded MATLAB runtime library.) MATLAB
Function blocks do not compile or generate code for extrinsic functions; instead, they
send the function to MATLAB for execution during simulation. There are two ways to call
MATLAB functions as extrinsic functions in Embedded MATLAB Function blocks:

• Use the new construct eml.extrinsic to declare the function extrinsic
• Call the function using feval

For details, see Calling MATLAB Functions in the Embedded MATLAB documentation.

Compatibility Considerations

Currently, Embedded MATLAB Function blocks use implicit rules to handle calls to
external functions:

• For simulation, Embedded MATLAB Function blocks send the function to MATLAB
for execution

• For code generation, Embedded MATLAB Function blocks check whether the
function affects the output of the Embedded MATLAB function in which it is called.
If there is no effect on output, Embedded MATLAB Function blocks proceed with
code generation, but exclude the function call from the generated code. Otherwise,
Embedded MATLAB Function blocks generate a compiler error.

In future releases, Embedded MATLAB Function blocks will apply these rules only
to external functions that you call as extrinsic functions. Otherwise, they will compile
external functions by default, potentially causing unpredictable behavior or generating

27-10

http://www.mathworks.com/help/releases/R2012a/techdoc/ref/histc.html
http://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/bitrevorder.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/hypot.html
http://www.mathworks.com/help/releases/R2012a/toolbox/eml/ug/bq1h2z9-38.html

 S-Functions

errors. For reliable simulation and code generation, MathWorks recommends that you
call external MATLAB functions as extrinsic functions.

Type and Size Mismatch of Values Returned from MATLAB Functions Generates Error

Embedded MATLAB Function blocks now generate an error if the type and size of a
value returned by a MATLAB function does not match the predeclared type and size.

Compatibility Considerations

In previous releases, Embedded MATLAB Function blocks attempted to silently convert
values returned by MATLAB functions to predeclared data type and sizes if a mismatch
occurred. Now, such mismatches always generate an error, as in this example:

x = int8(zeros(3,3)); % Predeclaration

x = eval('5'); % Calls MATLAB function eval

This code now generates an error because the Embedded MATLAB function predeclares
x as a 3–by-3 matrix, but MATLAB function returns x as a scalar double. To avoid errors,
reconcile predeclared data types and sizes with the actual types and sizes returned by
MATLAB function calls in your Embedded MATLAB Function blocks.

Embedded MATLAB Function Blocks Cannot Output Character Data

Embedded MATLAB Function blocks now generate an error if any of its outputs is
character data.

Compatibility Considerations

In the previous release, Embedded MATLAB Function blocks silently cast character
array outputs to int8 scalar arrays. This behavior does not match MATLAB, which
represents characters in 16–bit unicode.

27-11

R2006a+
Version: 6.4.1

No New Features or Changes

R2006a
Version: 6.4

New Features

Compatibility Considerations

R2006a

Signal Object Initialization

This release introduces the use of signal objects to specify initial values for signals
and states. This allows you to initialize signals or states in the model, not just those
generated by blocks that have initial condition or value parameters. For details, see
Using Signal Objects to Initialize Signals and Discrete States in the online Simulink
documentation.

Icon Shape Property for Logical Operator Block

The Logical Operator block's parameter dialog box contains a new property, Icon
shape, settings for which can be either rectangular or distinctive. If you select
rectangular (the default), the block appears as it does in previous releases. If you
select distinctive, the block appears as the IEEE® standard graphic symbol for the
selected logic operator.

Data Type Property of Parameter Objects Now Settable

This release allows you to set the data type of a Simulink.Parameter object via either its
Value property or via its Data type property. In previous releases, you could specify
the data type of a parameter object only by setting the object's Value property to a typed
value expression.

Range-Checking for Parameter and Signal Object Values

This release introduces range checking for Simulink.Parameter and Simulink.Signal
objects. Simulink software checks whether a parameter's Value or a signal's Initial
value falls within the values you specify for the object's Minimum and Maximum
properties. If not, Simulink software generates a warning or error.

Compatibility Considerations

Previous releases ignored such violations since the Minimum and Maximum properties
were intended for use in documenting parameter and signal objects. In this release,
Simulink software displays a warning if you load a parameter object or a signal object
does not specify a valid range or its value falls outside the specified range. If you get such
a warning, change the parameter or signal object's Value or Minimum or Maximum values
so that the Value falls within a valid range.

29-2

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bql24_a-1.html#bqm1gpw
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/logicaloperator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.parameter.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.parameter.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.signal.html

 S-Functions

Expanded Menu Customization

The previous release of Simulink software allows you to customize the Simulink editor's
Tools menu. This release goes a step further and allows you to customize any Simulink
(or Stateflow) editor menu (see Customizing the Simulink User Interface in the online
Simulink documentation).

Bringing the MATLAB Desktop Forward

The Model Editor's View menu includes a new command, MATLAB Desktop, that
brings the MATLAB desktop to the front of the windows displayed on your screen.

Converting Atomic Subsystems to Model References

This release adds a command, Convert to Model Block, to the context (right-click)
menu of an atomic subsystem. Selecting this command converts an atomic subsystem to
a model reference . See Atomic Subsystem and Converting a Subsystem to a Referenced
Model for more information.

The function sl_convert_to_model_reference, which provided some of the same
capabilities as Convert to Model Block, is obsolete and has been removed from the
documentation. The function continues to work, so no incompatibility arises, but it posts
a warning when called. The function will be removed in a future release.

Concatenate Block

The new Concatenate block concatenates its input signals to create a single output signal
whose elements occupy contiguous locations in memory. The block typically uses less
memory than the Matrix Concatenation block that it replaces, thereby reducing model
memory requirements.

Compatibility Considerations

This release replaces obsolete Matrix Concatenation blocks with Concatenate blocks
when loading models created in previous releases.

29-3

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqt2_on.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/atomicsubsystem.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141943.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141943.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/concatenate.html

R2006a

Model Advisor Changes

Model Advisor Tasks Introduced

This release introduces Model Advisor tasks for referencing models and upgrading a
model to the current version of Simulink software. See Consulting the Model Advisor in
the online Simulink documentation for more information.

Model Advisor API

This release introduces an application program interface (API) that enables you to
run the Model Advisor from the MATLAB command line or from M-file programs. For
example, you can use the API to create M-file programs that determine whether a
model passes selected Model Advisor checks whenever you open, simulate, or generate
code from the model. See Running the Model Advisor Programmatically in the online
Simulink documentation for more information.

Built-in Block's Initial Appearance Reflects Parameter Settings

In this release, when you load a model containing nonmasked, built-in blocks whose
appearance depends on their parameter settings, such as the Selector block, the
appearance of the blocks reflect their parameter settings. You no longer have to update
the model to update the appearance of such blocks.

Compatibility Considerations

In previous releases, model or block callback functions that use set_param to set a built-
in, nonmasked block's parameters could silently put the block in an unusable state. In
this release, such callbacks will trigger error messages if they put blocks in an unusable
state.

Double-Click Model Block to Open Referenced Model

In this release, double-clicking a Model block that specifies a valid referenced model
opens the referenced model, rather than the Block Parameters dialog box as in
previous releases. To open the Block Parameters dialog box, choose Model Reference
Parameters from the Context or Edit menu. See Navigating a Model Block for details.

29-4

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141979.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141979.html#bqobjbz
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/selector.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/set_param.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/model.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/modelvariants.html#f4-141784

 S-Functions

Signal Logs Reflect Bus Hierarchy

In this release, signal logs containing buses reflect the structure of the buses themselves
instead of flattening bus data as in previous releases (see Simulink.TsArray).

Tiled Printing

This release introduces a tiled printing option that allows you to distribute a block
diagram over multiple pages. You can control the number of pages over which Simulink
software distributes the block diagram, and hence, the total size of the printed image.
See Tiled Printing in the online Simulink documentation for more information.

Solver Diagnostic Controls

In this release, the Configuration Parameters dialog box includes the following
enhancements:

• The Diagnostics pane contains a new diagnostic, Consecutive zero crossings
violation, that alerts you if Simulink software detects the maximum number
of consecutive zero crossings allowed. You can specify the criteria that Simulink
software uses to trigger this diagnostic using two new Solver diagnostic controls
on the Solver pane:

• Consecutive zero crossings relative tolerance
• Number of consecutive zero crossings allowed

For more information, see Preventing Excessive Zero Crossings in the online Simulink
documentation.

• The Solver pane contains a new solver diagnostic control, Number of consecutive
min step size violations allowed, that Simulink software uses to trigger the Min
step size violation diagnostic (see Number of consecutive min steps in the online
Simulink documentation).

Diagnostic Added for Multitasking Conditionally Executed Subsystems

This release adds a sample-time diagnostic that detects an enabled subsystem in
multitasking solver mode that operates at multiple rates or a conditionally executed
subsystem that contain an asynchronous subsystem. Such subsystems can cause

29-5

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.tsarray.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f2-82944.html#bqnyavu
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f7-8243.html#bridiag-5
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq7cmsp-1.html#bq9z1d0-1

R2006a

corrupted data or non-deterministic behavior in a real-time system using code generated
from the model. See the documentation for the Multitask Conditionally Executed
Subsystem diagnostic for more information.

Embedded MATLAB Function Block Features and Changes

Option to Disable Saturation on Integer Overflow

The properties dialog for Embedded MATLAB Function blocks provides a new Saturate
on Integer Overflow check box that lets you disable saturation on integer overflow
to generate more efficient code. When you enable saturation on integer overflow,
Embedded MATLAB Function blocks add additional checks in the generated code to
detect integer overflow or underflow. Therefore, it is more efficient to disable this option
if your algorithm does not rely on overflow behavior. For more information, see MATLAB
Function Block Properties in the online Simulink documentation.

Nontunable Option Allows Use of Parameters in Constant Expressions

The Data properties dialog for the MATLAB Function (formally called Embedded
MATLAB Function) block provides a new Tunable check box that lets you specify
the tunability (see Tunable Parameters in the online Simulink documentation) of a
workspace variable or mask parameter used as data in Embedded MATLAB code. The
option is checked by default. Unchecking the option allows you to use a workspace
variable or mask parameter as data wherever Embedded MATLAB requires a constant
expression, such as a dimension argument to the zeros function. For more information,
see Adding Data to a MATLAB Function Block in the online Simulink documentation.

Enhanced Support for Fixed-Point Arithmetic

Embedded MATLAB Function blocks support the new fixed-point features introduced
in Version 1.4 (R2006a) of the Fixed-Point Toolbox software, including [Slope Bias]
scaling (see Specifying Simulink Fixed Point Data Properties in the online Simulink
documentation). For information about the features added to the Simulink Fixed Point
software, see Fixed-Point Toolbox Release Notes.

Support for Integer Division

Embedded MATLAB Function blocks support the new MATLAB function idivide, which
performs integer division with a variety of rounding options. It is recommended that the
rounding option used for integer division in Embedded MATLAB Function blocks match
the rounding option in the parent Simulink model.

29-6

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f6-94058.html#bqoe0f9
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f6-94058.html#bqoe0f9
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/matlabfunction.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f7-20739.html#f7-23615
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f6-94058.html#bqlblru
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f6-145171.html#bql9q3m
http://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/rn/bqmzoua.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/idivide.html

 S-Functions

The default rounding option for idivide is 'fix', which rounds toward zero. This
option corresponds to the choice Zero in the submenu for Signed integer division
rounds to:, a parameter that you can set in the Hardware Implementation Pane of the
Configuration Parameters dialog in Simulink software (see Hardware Implementation
Pane in the online Simulink documentation). If this parameter is set to Floor in
the Simulink model that contains the Embedded MATLAB Function block, it is
recommended that you pass the rounding option 'floor' to idivide in the block.

For a complete list of Embedded MATLAB runtime library functions provided in this
release, see “New Embedded MATLAB Runtime Library Functions” on page 29-7.

New Embedded MATLAB Runtime Library Functions

Embedded MATLAB Function blocks provide new runtime library functions in the
following categories:

• “Integer Arithmetic” on page 29-7
• “Linear Algebra” on page 29-7
• “Logical” on page 29-8
• “Polynomial” on page 29-8
• “Trigonometric” on page 29-8

Integer Arithmetic

• idivide

Linear Algebra

• compan
• dot
• eig
• fliplr
• flipud
• freqspace
• hilb
• ind2sub
• invhilb
• linspace

29-7

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq8t7za-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq8t7za-1.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/idivide.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/compan.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/dot.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/eig.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/fliplr.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/flipud.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/freqspace.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/hilb.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/ind2sub.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/invhilb.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/linspace.html

R2006a

• logspace
• magic
• median
• meshgrid
• pascal
• qr
• rot90
• sub2ind
• toeplitz
• vander
• wilkinson

Logical

• isequal
• isinteger
• islogical

Polynomial

• polyfit
• polyval

Trigonometric

• acosd
• acot
• acotd
• acoth
• acsc
• acscd
• acsch
• asec
• asecd

29-8

http://www.mathworks.com/help/releases/R2012a/techdoc/ref/logspace.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/magic.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/median.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/meshgrid.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/pascal.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/qr.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/rot90.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/sub2ind.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/toeplitz.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/vander.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/wilkinson.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/isequal.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/isinteger.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/islogical.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/polyfit.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/polyval.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/acosd.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/acot.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/acotd.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/acoth.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/acsc.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/acscd.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/acsch.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/asec.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/asecd.html

 S-Functions

• asech
• asind
• atand
• cosd
• cot
• cotd
• coth
• csc
• cscd
• csch
• sec
• secd
• sech
• sind
• tand

Setting FIMATH Cast Before Sum to False No Longer Supported in Embedded MATLAB Function
Blocks

You can no longer set the FIMATH property CastBeforeSum to false for fixed-point
data in Embedded MATLAB Function blocks.

Compatibility Considerations

The reason for the restriction is that Embedded MATLAB Function blocks do not
produce the same numerical results as MATLAB when CastBeforeSum is false.
In the previous release, Embedded MATLAB Function blocks set CastBeforeSum to
false by default for the default FIMATH object. If you have existing models that contain
Embedded MATLAB Function blocks in which CastBeforeSum is false, you will get
an error when you compile or update your model. To correct the issue, you must set
CastBeforeSum to true. To automate this process, you can run the utility slupdate
either from the Model Advisor or by typing the following command at the MATLAB
command line:

slupdate ('modelname')

29-9

http://www.mathworks.com/help/releases/R2012a/techdoc/ref/asech.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/asind.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/atand.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/cosd.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/cot.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/cotd.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/coth.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/csc.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/cscd.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/csch.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/sec.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/secd.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/sech.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/sind.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/tand.html

R2006a

where 'modelname' is the name of the model containing the Embedded MATLAB
Function block that generates the error. slupdate prompts you to update this property
by selecting one of these options:

Option Action

Yes Updates the first occurrence of CastBeforeSum=false in Embedded
MATLAB Function blocks in the offending model and then prompts you for
each subsequent one found in the model.

No Does not update any occurrences of CastBeforeSum=false in the
offending model.

All Updates all occurrences of CastBeforeSum=false in the offending model.

Note slupdate detects CastBeforeSum=false only in default FIMATH objects defined
for Simulink software signals in Embedded MATLAB Function blocks. If you modified
the FIMATH object in an Embedded MATLAB Function block, update CastBeforeSum
manually in your model and fix the errors as they are reported.

Type Mismatch of Scalar Output Data in Embedded MATLAB Function Blocks Generates Error

Embedded MATLAB Function blocks now generate an error if the output type inferred by
the block does not match the type you explicitly set for a scalar output.

Compatibility Considerations

In previous releases, a silent cast was inserted from the computed type to the set type
when mismatches occurred. In most cases, you should not need to set the output type
for Embedded MATLAB Function blocks. When you do, insert an explicit cast in your
Embedded MATLAB script. For example, suppose you declare a scalar output y to be of
type int8, but its actual type is double. Replace y with a temporary variable t in your
script and then add the following code:

y = int8(t);

Implicit Parameter Type Conversions No Longer Supported in Embedded MATLAB Function
Blocks

Embedded MATLAB Function blocks now generate an error if the type of a parameter
inferred by the block does not match the type you explicitly set for the parameter.

29-10

 S-Functions

Compatibility Considerations

In the previous release, if the type you set for a parameter did not match the actual
parameter value, Embedded MATLAB Function blocks implicitly cast the parameter to
the specified type. Now you receive a compile-time error when type mismatches occur for
parameters defined in Embedded MATLAB Function blocks.

There are two workarounds:

• Change the scope of the data from Parameter to Input. Then, connect to the input
port a Constant block that brings in the parameter and casts it to the desired type.

• Cast the parameter inside your Embedded MATLAB function to the desired type.

Fixed-Point Parameters Not Supported

Embedded MATLAB Function blocks generate a compile-time error if you try to bring a
fi object defined in the base workspace into Embedded MATLAB Function blocks as a
parameter.

There are two workarounds:

• Change the scope of the data from Parameter to Input. Then, connect to the input
port a Constant block that brings in the parameter and casts it to fixed-point type.

• Cast the parameter inside your Embedded MATLAB function to fixed-point type.

Embedded MATLAB Function Blocks Require C Compiler for Windows 64

No C compiler ships with MATLAB and Simulink products on Windows 64. Because
Embedded MATLAB Function blocks perform simulation through code generation, you
must supply your own MEX-supported C compiler to use these blocks. The C compilers
available at the time of this writing for Windows 64 include Microsoft Visual Studio®

2005 and the Microsoft Platform SDK.

29-11

R14SP3
Version: 6.3

New Features

Compatibility Considerations

R14SP3

Model Referencing

Function-Call Models

This release allows you to use a block capable of emitting a function-call signal, such
as a Function-Call Generator or a custom S-function, in one model to control execution
of another model during the current time step. See Function-Call Subsystems in the
Simulink documentation for more information.

Using Noninlined S-Functions in Referenced Models

This release adds limited support for use of noninlined S-functions in models referenced
by other models. For example, you can simulate a model that references models
containing noninlined S-functions. However, you cannot use Real-Time Workshop
software to generate a standalone executable (Real-Time Workshop target) for the model.
See Model Referencing Limitations in the Simulink documentation for information on
other limitations.

Referenced Models Without Root I/O Can Inherit Sample Times

Previous releases of Simulink software do not allow referenced models without root-level
input or output ports to inherit their sample time. This release removes this restriction.

Referenced Models Can Use Variable Step Solvers

Previous releases of Simulink software do not allow models to reference models that
require variable-step solvers. This release removes this restriction.

Model Dependency Graphs Accessible from the Tools Menu

This release adds a Model Reference Dependency Graph item to the Model Editor's
Tools menu. The item displays a graph of the models referenced by the model displayed
in the Model Editor. You can open any model in the dependency graph by clicking its
node. See Viewing a Model Reference Hierarchy in the Simulinkdocumentation for more
information.

30-2

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/functioncallgenerator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqrmu3t-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqonbts-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqgi8fc.html

 Model Referencing

Command That Converts Atomic Subsystems to Model References

This release introduces a MATLAB command that converts an atomic subsystem to a
model reference. See Simulink.SubSystem.convertToModelReference in the Simulink
Reference documentation for more information.

Model Reference Demos

This release has the following model reference demo changes:

• Model reference demo names are now prepended with sldemo_. For example, the
demo mdlref_basic.mdl is now sldemo_mdlref_basic.mdl.

• You can no longer use the mdlrefdemos command from the MATLAB command
prompt to access model reference demos. Instead, you can navigate to the Simulink
demos tab either though the Help browser, or by typing demos at the command
prompt, then navigating to the Simulink demos category and browsing the demos.

30-3

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.subsystem.converttomodelreference.html

R14SP3

Block Enhancements

Variable Transport Delay, Variable Time Delay Blocks

This release replaces the Variable Transport Delay block of previous releases with two
new blocks. The Variable Transport Delay block of previous releases implemented a
variable time delay behavior, which is now implemented by the Variable Time Delay
block introduced in this release. This release changes the behavior of the Variable
Transport Delay block to model variable transport delay behavior, e.g., the behavior of a
fluid flowing through a pipe.

Additional Reset Trigger for Discrete-Time Integrator Block

This release adds a sampled level trigger option for causing the Discrete-Time
Integrator to reset. The new reset trigger is more efficient than the level reset option,
but may introduce a discontinuity when integration resumes.

Note: In Simulink 6.2 and 6.2.1, the level reset option behaves like the sampled level
option in this release. This release restores the level reset option to its original behavior.

Input Port Latching Enhancements

This release includes the following enhancements to the signal latching capabilities of
the Inport block.

Label Clarified for Triggered Subsystem Latch Option

The dialog box for an Inport block contains a check box to latch the signal connected to
the system via the port. This check box applies only to triggered subsystems and hence
is enabled only when the Inport block resides in a triggered subsystem. In this release,
the label for the check box that selects this option has changed from Latch (buffer)
input to Latch input by delaying outside signal. This change is intended to make
it clear what the option does, i.e., cause the subsystem to see the input signal's value at
the previous time step when the subsystem executes at the current time step (equivalent
to inserting a Memory block at the input outside the subsystem). The Inport block's icon
displays <Lo> to indicate that this option is selected.

30-4

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/variabletransportdelay.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/variabletransportdelay.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretetimeintegrator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretetimeintegrator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/inport.html

 Block Enhancements

Latch Option Added for Function-Call Subsystems

This release adds a check box labeled Latch input by copying inside signal to the
Inport block's dialog box. This option applies only to function-call subsystems and hence
is enabled only if the Inport block resides in a function-call subsystem. Selecting this
option causes Simulink software to copy the signal output by the block into a buffer
before executing the contents of the subsystem and to use this copy as the block's output
during execution of the subsystem. This ensures that the subsystem's inputs, including
those generated by the subsystem's context, will not change during execution of the
subsystem. The Inport block's icon displays to indicate that this option is selected.

Improved Function-Call Inputs Warning Label

In previous releases, the dialog box for a function-call subsystem contains a check box
labeled Warn if function-call inputs arise inside called context. This release
changes the label to Warn if function-call inputs are context-specific. This change
is intended to indicate more clearly the warning's purpose, i.e., to alert you that some or
all of the function-call inputs come from the function-call subsystem's context and hence
could change while the function-call subsystem is executing.

Note: In this release, you can avoid this function-call inputs problem by selecting the
Latch input by copying inside signal option on the subsystem's Inport blocks (see
“Latch Option Added for Function-Call Subsystems” on page 30-5).

Parameter Object Expressions No Longer Supported in Dialog Boxes

Compatibility Considerations

Previous releases allow you to specify a Simulink.Parameter object as the value of a block
parameter by entering an expression that returns a parameter object in the parameter's
value field in the block's parameter dialog box. In this release, you must enter the name
of a variable that references the object in the MATLAB or model workspace.

30-5

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.parameter.html

R14SP3

Modeling Enhancements

Annotations

This release introduces the following enhancements to model annotations:

• Annotation properties dialog box (see Annotations Properties Dialog Box in the
Simulinkdocumentation)

• Annotation callback functions (see Annotation Callback Functions in the
Simulinkdocumentation)

• Annotation application programming interface (see Annotations API in the
Simulinkdocumentation)

Custom Signal Viewers and Generators

This release allows you to add custom signal viewers and generators so that you
can manage them in the Signal & Scope Manager. See Visualizing and Comparing
Simulation Results in the Simulink documentation for further details.

Model Explorer Search Option

This release adds an Evaluate Property Values During Search option to the
Model Explorer. This option applies only for searches by property value. If enabled, the
option causes the Model Explorer to evaluate the value of each property as a MATLAB
expression and compare the result to the search value. If disabled (the default), the
Model Explorer compares the unevaluated property value to the search value.

Using Signal Objects to Assign Signal Properties

Previous releases allow you to use signal objects to check signal property values assigned
by signal sources. This release allows you, in addition, to use signal objects to assign
values to properties not set by signal sources. See Simulink.Signal in the Simulink
Reference documentation for more information.

Bus Utility Functions

This release introduces the following bus utility functions:

30-6

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-14820.html#bqgu4__
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-14820.html#bqgu635
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-14820.html#bqgu72e
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brg_yqr.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/brg_yqr.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.signal.html

 Modeling Enhancements

• Simulink.Bus.save
• Simulink.Bus.createObject
• Simulink.Bus.cellToObject

Fixed-Point Support in Embedded MATLAB Function Blocks

In this release, the Embedded MATLAB Function block supports manyFixed-Point
Toolbox functions. This allows you to generate code from models that contain fixed-point
MATLAB functions. For more information, see Code Acceleration and Code Generation
from MATLAB for Fixed-Point Algorithms in the Fixed-Point Toolbox documentation.

Note: You must have a Simulink Fixed Point license to use this capability.

Embedded MATLAB Function Editor

The Embedded MATLAB Editor has a new tool, the Ports and Data Manager. This tool
helps you manage your block inputs, outputs, and parameters. The Ports and Data
Manager uses the same Model Explorer dialogs for manipulating data, but restricts the
view to the block you are working on. You can still access the Model Explorer via a menu
item to get the same functionality as in previous releases.

Input Trigger and Function-Call Output Support in Embedded MATLAB
Function Blocks

Embedded MATLAB Function blocks now supports input triggers and function-
call outputs. See Ports and Data Manager in the Simulinkdocumentation for more
information.

Find Options Added to the Data Object Wizard

This release adds find options to the Data Object Wizard. The options enable you to
restrict the search for model data to specific kinds of objects. See Data Object Wizard in
the Simulinkdocumentation for more information.

30-7

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.bus.save.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.bus.createobject.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.bus.celltoobject.html
http://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/ug/bq4crme.html
http://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/ug/bq4crme.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f6-94058.html#bqgwvsq-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f14-90636.html#bqgy1ty

R14SP3

Fixed-Point Functions No Longer Supported for Use in Signal Objects

Compatibility Considerations

Previous releases allowed you to use fixed-point data type functions, such as sfix, to
specify the value of the DataType property of a Simulink.Signal object. This release
allows you to use only built-in data types and Simulink.NumericType objects to specify
the data types of Simulink.Signal objects. See the Simulink.Signal documentation for
more information.

30-8

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.numerictype.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.signal.html

 Simulation Enhancements

Simulation Enhancements

Viewing Logged Signal Data

This release can display logged signal data in the MATLAB Times Series Tools viewer
on demand or whenever a simulation ends or you pause a simulation. See “Viewing
Logged Signal Data” in the Simulink documentation for more information.

Importing Time-Series Data

In this release, root-level Inport blocks can import data from time-series (see
Simulink.Timeseries in the Simulink Reference documentation) and time-series array
(see Simulink.TSArray in the Simulink Reference documentation) objects residing in
the MATLAB workspace. See Importing MATLAB timeseries Data in the Simulink
documentation for more information. From Workspace blocks can also import time-series
objects. The ability to import time-series objects allows you to use data logged from one
simulation as input to another simulation.

Using a Variable-Step Solver with Rate Transition Blocks

Previous releases of Simulink software generate an error if you try to use a variable-
step solver to solve a model that contains Rate Transition blocks. This release allows
you to use variable-step as well as fixed-step solvers to simulate a model. Note that you
cannot generate code from a model that uses a variable-step solver. However, you may
find it advantageous, in some cases, to use a variable-step solver to test aspects of the
model not directly related to code generation. This enhancement allows you to switch
back and forth between the two types of solver without having to remove and reinsert
Rate Transition blocks.

Additional Diagnostics

This release adds the following simulation diagnostics:

• Enforce sample times specified by Signal Specification blocks in the online Simulink
documentation

• Extraneous discrete derivative signals in the online Simulink documentation
• Detect read before write in the online Simulink documentation

30-9

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/inport.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.timeseries.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.tsarray.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsuwm6b.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/fromworkspace.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq8t6nm.html#bq8t6n6-13
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq7crwv-1.html#bq8t5ms-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq8t6qh.html#bq8t6q3-26

R14SP3

• Detect write after read in the online Simulink documentation
• Detect write after write in the online Simulink documentation

Data Integrity Diagnostics Pane Renamed, Reorganized

This release changes the name of the Data Integrity diagnostics pane of the
Configuration Parameters dialog box to the Data Validity pane. It also reorganizes
the pane into groups of related diagnostics. See Diagnostics Pane: Data Validity in the
online Simulink documentation for more information.

Improved Sample-Time Independence Error Messages

When you enable the Ensure sample time independent solver constraint (see
Periodic sample time constraint for more information), Simulink software generates
several error messages if the model is not sample-time independent. In previous releases,
these messages were not specific enough for you to determine why a model failed to be
sample-time independent. In this release, the messages point to the specific block, signal
object, or model parameter that causes the model not to be sample-time independent.

30-10

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq8t6qh.html#bq8t6q3-28
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq8t6qh.html#bq8t6q3-30
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq8t6qh.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bq7cmsp-1.html#bq990zm-1

 User Interface Enhancements

User Interface Enhancements

Model Viewing

This release adds the following model viewing enhancements:

• A command history for pan and zoom commands (see Viewing Command History in
the Simulinkdocumentation)

• Keyboard shortcuts for panning model views (see Model Viewing Shortcuts in the
Simulinkdocumentation)

Customizing the Simulink User Interface

This release allows you to use M-code to perform the following customizations of the
standard Simulink user interface:

• Add custom commands to the Model Editor's Tools menu (see Disabling and Hiding
Dialog Box Controls in the Simulink documentation)

• Disable, or hide widgets on Simulink dialog boxes (see Disabling and Hiding Dialog
Box Controls in the Simulink documentation)

30-11

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bruinpc-5.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f2-82531.html#bqgwups
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqt2_z8-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqt2_z8-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqt2_z8-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bqt2_z8-1.html

R14SP3

MEX-Files

MEX-Files on Windows Systems

In this release, the extension for files created by the MATLAB mex command on
Windows systems has changed from dll to mexw32 or mexw64.

Compatibility Considerations

If you have implemented any S-functions in C, Ada, or Fortran or have models that
reference other models, you should

• Recreate any mexopts.bat files (other than the one in your MATLAB preferences
directory) that you use to build S-functions and model reference simulation targets

• Rebuild your S-functions

MEX-File Extension Changed

In this release, the extension for files created by the MATLAB mex command has
changed from dll to mexw32 (and mexw64).

Compatibility Considerations

If you use a mexopts.bat file other than the one created by the mex command in your
MATLAB preferences directory to build Accelerator targets, you should recreate the file
from the mexopts.bat template that comes with this release.

30-12

http://www.mathworks.com/help/releases/R2012a/techdoc/ref/mex.html
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/mex.html

R14SP2
Version: 6.2

New Features

Compatibility Considerations

R14SP2

Multiple Signals on Single Set of Axes

Viewers can now display multiple signals on a single set of axes.

Logging Signals to the MATLAB Workspace

Viewers can now log the signals that they display to the MATLAB base workspace. See
Exporting Signal Data Using Signal Logging for more information.

Legends that Identify Signal Traces

Viewers can now display a legend that identifies signal traces.

Displaying Tic Labels

Viewers can now display tic labels both inside and outside scope axes.

Opening Parameters Dialog Box

You can open a viewer's parameters dialog box by right-clicking on the viewer scope.

Rootlevel Input Ports

Compatibility Considerations

If you save a model with rootlevel input ports in this release and load it in a previous
release, you will get the following warning:
Warning: model, line xxx block_diagram does not have a parameter

named 'SignalName'.

You can safely ignore this warning.

31-2

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsxca4i-1.html

